cho tam giác abc vuông tại a cm định lý pi-ta-go
Cho Tam giác abc vuông tại a có ac = 8 cm ab = 6cm tính bc ( định lý pi ta go)
Áp dụng định lí Pytago ta có
\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=10\)
Áp dụng định lí Py-ta-go trong tam giác vuông ABC có
BC2= AC2+AB2
hay AC2+AB2 = BC2
82+62= BC2
64+ 36= 100
BC2= 100
BC = √100 = 10 (cm)
Cho tam giác ABC vuông tại A,Đường cao AH biết C = 40°,AH=4cm.Tính tất cả các góc và các cạnh (không dùng định lý Pi Ta Go)
Xét tam giác ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{ABC}=90^0-\widehat{ACB}=90^0-40^0=50^0\)
Xét tam giác AHC vuông tại H:
\(sinC=\dfrac{AH}{AC}\Rightarrow sin40^0=\dfrac{4}{AC}\)
\(\Rightarrow AC\approx6,2\left(cm\right)\)
Xét tam giác AHB vuông tại H:
\(sinB=\dfrac{AH}{AB}\Rightarrow sin50^0=\dfrac{4}{AB}\)
\(\Rightarrow AB\approx5,2\left(cm\right)\)
Xét tam giác ABC vuông tại A:
\(sinB=\dfrac{AC}{BC}\Rightarrow sin50^0=\dfrac{6,2}{BC}\)
\(\Rightarrow BC\approx8,1\left(cm\right)\)
Cho tam giác ABC có AB=20 , BC = 12 . D là trung điểm của AB . vẽ DH vuông góc với BC (HC thuộc BC ) , DH = 4 . chúng minh tam giác ABC cân tại A ( theo định lý pi- ta - go )
Nêu định lí Pi-ta-go trong tam giác vuông ABC vuông tại A,biết BC là cạnh huyền.(ko có hình nên nói vậy cho dễ hiểu.)Từ đó,áp dụng tính AB,AC.
Định lí Pitago:Bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.
Từ đề bài, ta có 2 cạnh góc vuông là: AB, AC
Cạnh huyền là: BC
Ta có hệ thức từ định lí Pitago: \(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\Rightarrow AB=\sqrt{BC^2-AC^2}\)
\(\Rightarrow AC^2=BC^2-AB^2\Rightarrow AC=\sqrt{BC^2-AB^2}\)
Chúc bạn buổi tối vui vẻ nha ^^
Cho tam giác ABC cân tại A có đn-định-lý-py-ta-go
? đề bài
lag!!!! :D
mik ko hiểu đề bài nha
hok tốt
Việt
cho tam giác ABC có góc A = 60 độ chúng minh BC2 = AB2 +AC2 - AB. AC (theo định lý pi - ta - go )
kẻ BH _|_ BC tại H
xét tam giác ABH vuông tại H
=> góc ABH + góc BAC = 90 (đl)
góc BAC = 60 (gt)
=> góc ABH = 30 ; xét tam giác ABH vuông tại H
=> AH = BA/2 (định lí)
=> AB = 2AH (1)
xét tam giác ABH vuông tại H
=> AB^2 = AH^2 + BH^2 (đl pytago)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H
=> BC^2 = HC^2 + BH^2 (đl Pytago)
HC = AC - AH
=> BC^2 = (AC - AH)^2 + BH^2
=> BC^2 = AC^2 - 2AC.AH + AH^2 + BH^2 và (1)(2)
=> BC^2 = AC^2 - AB.AC + AH^2 + AB^2 - AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
Cho tam giác ABC, có AB= 6cm, AC=8cm BC=10 cm. a) Chứng minh tam giác ABC vuông b) Trên cạnh AB lấy điểm E sao cho AE = 4 cm, từ E kẻ đừng thẳng //BC cắt BC tại N. Tính độ dài BN,NC,EN. (vẽ hình và sử dụng định lý Ta lét ạ)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Đề sai rồi bạn
Tính chu vi của một hình tam giác vuông có hai cạnh góc vuông là 3cm và 4cm
Cách khác ngoài Định lý Pi-ta-go
co tam giac co ti le 3 canh la 3:4:5 thi la tam giac vuong ma day la tam giac vuong co hai canh l 3cm: 4cm suy ra canh con lai la 5cm vay chu vi cua no la 3+4+5= 12(cm)
1.Cho tam giác ABC vuông tại A có đường cao AH . C/M:
a,AB^2=BC.BH ; AC^2=BC.CH . Từ dố chứng minh định lý py-ta -go
b,AH^2=BH.CH
c,1/AH^2=1/AB^2+1/AC^2
d,AH.BC=AB.AC
Lời giải:
1.
Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$
Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)
$\Rightarrow CA^2=CH.CB$
Do đó:
$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$
(đpcm)
b. Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$
$\Rightarrow AH^2=BH.CH$
c.
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$
$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$
$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$
.d. Hiển nhiên theo công thức diện tích.