Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Phương Linh
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Trên con đường thành côn...
4 tháng 8 2021 lúc 21:10

undefined

Nguyễn Hoàng Dương
11 tháng 4 lúc 21:42

kẻ lười biếng nạp card, đi ô tô

Võ Phương Linh
Xem chi tiết
Akai Haruma
23 tháng 9 2021 lúc 18:07

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$

Tương tự:

$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$

$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$

Cộng theo vế:

$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)

Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$

Lê Song Phương
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Xyz OLM
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Vy Thảo
Xem chi tiết
cao van duc
12 tháng 5 2019 lúc 22:18

b, có thể dùng bunhiacopxki nếu bn k bt bunhiacopxki  thì thay 1=x+y+z r sử dụng bđt côsi chính là câu a đấy  

Vy Thảo
12 tháng 5 2019 lúc 22:21

Giải hộ mình được không ạ ! Mình cảm ơn nhiều

Mai Nhật Lệ
13 tháng 5 2019 lúc 19:45

P = \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)

\(=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=3+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)

Áp dụng BĐT ở câu a, ta được:

\(P\ge3+2+2+2=9\)

Dấu '=' xảy ra khi x=y=z

Nguyễn Thị Lan Hương
Xem chi tiết
lan vũ
Xem chi tiết
Lương Hữu Thành
6 tháng 6 2018 lúc 14:08

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

Lê Song Phương
Xem chi tiết
Tô Hoàng Long
10 tháng 2 2023 lúc 19:23

không biết :))))

Quyen Nguyen
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2019 lúc 23:32

\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)

\(\Rightarrow A_{min}=\frac{3}{2}\) khi \(x=y=z=1\)

Akai Haruma
20 tháng 6 2019 lúc 23:34

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

\(\frac{1}{x+1}+\frac{x+1}{4}\geq 1; \frac{1}{y+1}+\frac{y+1}{4}\geq 1; \frac{1}{z+1}+\frac{z+1}{4}\geq 1\)

Cộng theo vế:

\(\Rightarrow A+\frac{x+y+z+3}{4}\geq 3\)

\(\Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\)

\(x+y+z\leq 3\Rightarrow \Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)

Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)

-------------

Hoặc bạn có thể áp dụng luôn BĐT Cauchy-Schwarz:

\(A\geq \frac{(1+1+1)^2}{1+x+1+y+1+z}=\frac{9}{x+y+z+3}\geq \frac{9}{3+3}=\frac{3}{2}\)