Cho x,y,z≥0
x+y+z≤3
Tìm GTNN của biểu thức A=1/1+x+1/1+y+1/1+z
Giúp mình vs ạ!
Giúp mk vs mk đg cần gấp!!!
Cho `x,y,z>0` thỏa mãn `x+y+z<=3/2`. Tìm GTNN của biểu thức `A=x^2+y^2+z^2+1/x+1/y+1/z.`
(Sử dụng BĐT Cosi)
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
Cho `x,y,z>`0 thỏa mãn `x+y+z>=3/2` tìm GTNN của biểu thức `A=x^2+y^2+z^2+1/x+1/y+1/z`
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$
Tương tự:
$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$
$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$
Cộng theo vế:
$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)
Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Cho x >0, y >0, z >0
a, CMR \(\frac{x}{y}+\frac{y}{x}\ge2\) (Đã cm )
b, Biết x+y+z =1. Tìm GTNN của biểu thức P = \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Giúp mình với ạ TvT
b, có thể dùng bunhiacopxki nếu bn k bt bunhiacopxki thì thay 1=x+y+z r sử dụng bđt côsi chính là câu a đấy
Giải hộ mình được không ạ ! Mình cảm ơn nhiều
P = \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)
\(=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)
\(=3+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)
Áp dụng BĐT ở câu a, ta được:
\(P\ge3+2+2+2=9\)
Dấu '=' xảy ra khi x=y=z
CHO X , Y , Z KHÁC 0 VÀ X - Y - Z = 0 . TÍNH GIÁ TRỊ CỦA BIỂU THỨC SAU :
A = (1- Y / X ) (1- X - Z ) (1+ Z / Y )
LÀM NHANH GIÚP MIK VS Ạ
mọi người giúp mk vs ạ
câu 1: tìm GTNN của M= x^2-5x+y^2+xy-4y+2014
câu 2: cho x,y,z>0 và x+y+z=1
tìm GTNN của S= 1/x +4/y +y/z
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Câu 1: cho ; {x,y,z≥0
{ x+y+z≤3
Tính GTNN của biểu thức:
A= 1/1+x + 1/1+y + 1/1+z.
Giup mjk vs mjk đag cần gấp.!!
\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)
\(\Rightarrow A_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{1}{x+1}+\frac{x+1}{4}\geq 1; \frac{1}{y+1}+\frac{y+1}{4}\geq 1; \frac{1}{z+1}+\frac{z+1}{4}\geq 1\)
Cộng theo vế:
\(\Rightarrow A+\frac{x+y+z+3}{4}\geq 3\)
\(\Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\)
Mà \(x+y+z\leq 3\Rightarrow \Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)
Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)
-------------
Hoặc bạn có thể áp dụng luôn BĐT Cauchy-Schwarz:
\(A\geq \frac{(1+1+1)^2}{1+x+1+y+1+z}=\frac{9}{x+y+z+3}\geq \frac{9}{3+3}=\frac{3}{2}\)