\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{1+x+1+y+1+z}=\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{1+x+1+y+1+z}=\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Câu 1: cho ; {x,y,z≥0
{ x+y+z≤3
Tính GTNN của biểu thức:
A= 1/1+x + 1/1+y + 1/1+z.
Giup mjk vs mjk đag cần gấp.!!
a)Tìm giá trị của a,b biết:
a2- 2a + 6b +b2 = -10
b)Tính giá trị của biểu thức:
A=\(\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}\)
nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Cao nhân giúp đỡ e với ạ
e cảm ơn trước
cho ba số x,y,z khác 0 và 1/x+1/y+1/z=0. Tính giá trị biểu thức: P=2017/3xyz(1/x^3+1/y^3+1/z^3)
Cho ba số x, y, z thỏa mãn x+ y+z=1.Tìm giá trị nhỏ nhất của biểu thức A= x^2+ y^2+z^2
Những bài như thế này có phương hướng làm ntn ạ. Dayj em với.
Cho: x,y,z \(\ge\) 0; x+y+z \(\le\)3
Tìm giá trị nhỏ nhất của biểu thức A = \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
cho x,y,z>0. x+y+z=4. tìm gtnn của 4/x+1 + 9/y+2 +25/z+3
Cho x, y, z là các số thực dương thoả mãn: x + y + z = 1
Tìm GTNN của biểu thức: \(M=\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\)
Cho ba số x y z khác 0 thoả mãn x+y+z = 2003 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2003}\).
tính giá trị biểu thức \(\left(x^3+y^3\right)\left(y^5+z^5\right)\left(x^7+z^7\right)\)
Cho x,y,z là các số khác 0 và x + y = z khác 0 thoả mãn x = by + cz; y = ax + cz; z = ax + by. Tính giá trị biểu thức A = \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)