Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Vũ Ngọc Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 20:16

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

Agatsuma Zenitsu
Xem chi tiết
DoTungAnh
Xem chi tiết
Đào Gia Khanh
17 tháng 5 2015 lúc 17:48

Ta có:

\(-x^2>=0\)

\(x>=0\)

Mà \(10\)

Nên đa thức trên vô nghiệm.

Nguyễn Thị Thu Hằng
Xem chi tiết
Nguyễn Bảo Trân
Xem chi tiết
Nguyễn Ngọc Huy Toàn
4 tháng 4 2022 lúc 19:12

Ta có: 

\(\left(x-4\right)^2\ge0\)

\(\left(x+5\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi

\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn

=> đa thức vô nghiệm

Nguyễn Phạm Khánh Thư
Xem chi tiết
Nguyễn Đình Nhật Long
Xem chi tiết
Yeutoanhoc
4 tháng 5 2021 lúc 8:15

$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm

Vu Quang Huy
Xem chi tiết
Mavis x zeref
Xem chi tiết
Mavis x zeref
10 tháng 4 2021 lúc 20:38

Bằng 2 cách

Minh Nhân
10 tháng 4 2021 lúc 20:39

f(x) đề có cho bằng 0 không vậy em ? 

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 20:45

Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

hay đa thức \(f\left(x\right)=x^2+x+1\) vô nghiệm