Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Nhí Nhảnh
Xem chi tiết
Trần Việt Hoàng
Xem chi tiết
Nguyen Tuan Anh
8 tháng 6 2020 lúc 21:20

a) Xét tam giác KDA và KCD có: 

góc AKD chung

góc KDA=KCD

suy ra hai tam giác đồng dạng

b) Xét (o) có tứ giác ABCD nội tiếp 

góc ACD=ABD

góc DAC=DBC

sau đó bạn xét tam giác ABD và tam giác DBC đồng dạng là xong

Khách vãng lai đã xóa
Lê Trần Triệu Vy
Xem chi tiết
Trần Phương Thảo
23 tháng 4 2017 lúc 22:55

A nằm giữa K và C tại sao lại CM tam giác KCA????

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2023 lúc 20:55

a: Xét ΔKBA và ΔKCB có

góc KBA=góc KCB

góc CKB chung

=>ΔKBA đồng dạng với ΔKCB

=>KB/KC=KA/KB

=>KB^2=KA*KC

b: Xét (O) có

KB,KD là tiép tuyến

nên KB=KD

mà OB=OD

nên OK là trung trực của BD

=>OK vuông góc với BD

Xét ΔOBK vuông tại B có BI là đường cao

nên KI*KO=KB^2=KA*KC

=>KI/KA=KC/KO

=>KI/KC=KA/KO

=>ΔKIA đồng dạng với ΔKCO

=>góc KIA=góc KCO

=>góc AIO+góc ACO=180 độ

=>AIOC là tứ giác nội tiếp

trần Thành
Xem chi tiết
Trung Trung
Xem chi tiết
Nguyễn Nguyên Khánh
Xem chi tiết

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại trung điểm H của BC

Gọi K là giao điểm của OS và ED

Xét (O) có

SE,SD là các tiếp tuyến

Do đó: SE=SD

=>S nằm trên đường trung trực của ED(3)

Ta có: OE=OD

=>O nằm trên đường trung trực của ED(4)

Từ (3) và (4) suy ra SO là đường trung trực của ED

=>SO\(\perp\)ED tại trung điểm K của ED

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)

Xét ΔODS vuông tại D có DK là đường cao

nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)

Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)

=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

Xét ΔOHS và ΔOKA có

\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

góc HOS chung

Do đó: ΔOHS đồng dạng với ΔOKA

=>\(\widehat{OHS}=\widehat{OKA}\)

=>\(\widehat{OHS}=90^0\)

=>HO\(\perp\)SH tại H

mà HO\(\perp\)BH tại H

và SH,BH có điểm chung là H

nên S,H,B thẳng hàng

mà H,B,C thẳng hàng

nên S,B,H,C thẳng hàng

=>S,B,C thẳng hàng

nhocanime
Xem chi tiết
Quỳnh vũ
Xem chi tiết

1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)

nên KAOB là tứ giác nội tiếp

2: Xét (O) có

\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{KAC}=\widehat{ADC}\)

Xét ΔKAC và ΔKDA có

\(\widehat{KAC}=\widehat{KDA}\)

\(\widehat{AKC}\) chung

Do đó: ΔKAC đồng dạng với ΔKDA

=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)

=>\(KA^2=KC\cdot KD\)

Xét (O) có

KA,KB là các tiếp tuyến

Do đó: KA=KB

=>K nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OK là đường trung trực của AB

=>OK\(\perp\)AB tại M và M là trung điểm của AB

Xét ΔOAK vuông tại A có AM là đường cao

nên \(KM\cdot KO=KA^2\)

=>\(KA^2=KM\cdot KO=KC\cdot KD\)