Cho diểm A nằm ngoài đường tròn tâm O. Qua A kẻ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD (C nằm giữa A và D). Gọi I là trung điểm AB , lấy điểm K đối xứng với A qua B. Chứng minh rằng tứ giác IKDC nội tiếp đường tròn
Cho (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O)(A,B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D. a)Chứng minh tứ giác MAOB nội tiếp b)Gọi H là giao điểm của MO và AB. Chứng minh: MC.MD=MA^2. Từ đó suy ra MC.MD=MH.MO c)Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O)
Cho đường tròn (O;R) và M là một điểm nằm bên ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA và MB với đường tròn (O) tại A và B. Qua M vẽ cát tuyến MCD ( C nằm giữa M và D ). Gọi I là trung điểm của C và D . Chứng minh rằng: a) AIOB nội tiếp đường tròn b) gọi K là trung điểm của AM. Tia BK cắt (o) tại điểm thứ 2 là P. Tia MP cắt (o) tại điểm thứ 2 là N. Chứng minh: MC.MD=MD.MN
Cho điểm A cố định ở bên ngoài đường trong tâm O, kẻ các tiếp tuyến AM, AN vs đường tròn (M, N là các tiếp điểm). Vẽ cát tuyến ABC vs đường tròn (O) (B nằm giữa A và C). Gọi I là trung điểm của BC. a. CM tứ giác AMON nội tiếp đường tròn b.Gọi k là giao điểm của MN và BC. CM AK.AI=AB.AC
Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng:
a) Tứ giác MAOB là tứ giác nội tiếp và
b) Bốn điểm O, H, C, D thuộc một đường tròn.
c) CI là tia phân giác của .
Từ điểm M nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến ME, MF và cát tuyến MAB với (O) ( cát tuyến MAB không đi qua O ) .Qua A kẻ đường thẳng vuông góc với OE cắt EF và EB lần lượt tại C và D .Gọi N là trung điểm của AB . Chứng minh a) OFMN là tứ giác nội tiếp b) ACNF là tứ giác nội tiếp c) AC = CD
Cho đường tròn tâm O. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB,AC. Gọi M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB,AC lần lượt ở D và E.Gọi I và K lần lượt là giao điểm của OD và OE với BC. Chứng minh tứ giác OBDK nội tiếp
Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB,AC (B,C là tiếp điểm). Kẻ cát tuyến ADE,H là trung điểm của DE. Chứng minh :
a/ Tứ giác ABOC nội tiếp
b/ AB2 = AD.AE
c)bh cắt (O) tại K : cm AE//Ck