Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB,AC (B,C là tiếp điểm). Kẻ cát tuyến ADE,H là trung điểm của DE. Chứng minh :
a/ Tứ giác ABOC nội tiếp
b/ AB2 = AD.AE
c)bh cắt (O) tại K : cm AE//Ck
cho ( o , R ) và đường thẳng d không đi qua O cắt đường tròn ( o) tại 2 điểm A , B . Từ điểm C ở ngoài đường tròn (O) ,C thuộc d sao cho CB < CA kẻ 2 tiếp tuyến CM,CN với đưởng tròn .gọi H là trung điểm của dây AB OH cắt CN tại K
1.Chứng minh:KN.KC=KH.KO
2. chứng minh:5 điểm M,H,O,N,C cùng thuộc một đường tròn
3. Đoạn thẳng CO cắt MN TẠI i.Chứng minh CIB^ = OAB^
4 , Một đường thẳng qua O và // với MN cắt CM , CN lần lượt tại E và F . Xác định vị trí của điểm C trên đường thẳng D để dienj tích tam giác CEF nhỏ nhất
cho một đường tròn (O;R) từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB và AC với đường tròn.
a, chứng minh ABOC nội tiếp.
b,D là trung điểm AC và BD cắt đường tròn tại E, AE cắt đường tròn tại F. Chứng minh AB2= AE•AF
c, i là giao điểm ao với (o) chứng minh BC=CF
Từ điểm A nằm ngoài (O;R) kẻ hai tiếp tuyến AB và AC (B và C là hai tiếp điểm). Gọi H là trung điểm của BC.
a) Chứng minh O, A, B, C cùng thuộc đường tròn và 3 điểm O, H, A thẳng hàng.
b) Kẻ đường kính CD. AD cắt đường tròn (O)tại điểm thứ hai là E và cắt đường tròn đường kính OA tại I. Chứng minh I là trung điểm của DE.
c) OI cắt BC tại F, Gọi G là giao điểm của OA và FE, OE cắt BC tại M. Chứng minh rằng: GM // DE.
Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B; C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại ETừ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B;C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại E.a.Chứng minh : tứ giác OBAC nội tiếp và AB^2=AE.AKb.Chứng minh : tứ giác OHEK nội tiếp và CE vuông góc HEc.Tia BK và tia AC cắt nhau tại F.Kẻ CI vu
Cho Δ ABC nội tiếp đường tròn (O) , kẻ các đường cao BD và CE của Δ ABC chúng cắt nhau tại H và cắt đường tròn lần lượt tại I và K a) CM ; tứ giác ADHE , BCDE nội tiếp b) CM : AI = AK c) Đường thẳng DE cắt đường tròn (O) tại hai điểm M , N . CM : AM = AN
Cho đường tròn O và điểm A ở ngoài O . Từ A kẻ hai tiếp
tuyến AB, AC tới O (B, C là các tiếp điểm). Qua A vẽ đường thẳng d không đi qua
O , cắt O tại hai điểm P, Q (P nằm giữa A và Q).
a) Chứng minh rằng tứ giác ABOC nội tiếp.
b) Chứng minh rằng 2.ABAPAQ
c) Qua P vẽ đường thẳng song song với BQ cắt đường thẳng AB, BC theo thứ tự
tại M và N. Chứng minh rằng P là trung điểm của đoạn MN.
Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng:
a) Tứ giác MAOB là tứ giác nội tiếp và
b) Bốn điểm O, H, C, D thuộc một đường tròn.
c) CI là tia phân giác của .