Chai số thức x,y thõa mãn x + y + xy => 7, Tìm Min của P= x + 2y
Bài 1: cho x,y là các số thực thõa mãn \(\sqrt{x+2}-y^3=\sqrt{y+3}-x^3.\)
tìm MIN của \(B=x^2-2y^2+2xy+2y+10\)
Bài 2: cho 3 số thực x,y,z thỏa mãn \(x^2+y^2+z^2=3\)
tìm MAX và MIN của \(P=x+y+2z\)
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
TÌM X,Y,Z thõa mãn : 2x(x-2)+x+xy-2y=9
Cho số thực x;y thỏa mãn: x^2 + xy + 2y^2 = 1 Tìm min và max của A = x - 2y + 3
pro rồi thì bạn cần gì mình giải nhỉ
??
\(A=x-2y+3\Rightarrow x=A+2y-3\)
\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)
\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)
\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)
\(\Leftrightarrow-7A^2+42A-31\ge0\)
\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)
Với các sô thực x,y thõa mãn \(1\le x\le y\le5\) Tìm min P=\(2\left(x^2+y^2\right)+4\left(x-y-xy\right)+7\)
cho các số thực x,y thỏa mãn \(2\left(x^2+y^2\right)=1+xy\)
tìm MAX và MIN của biểu thức: \(P=7\left(x^4+y^4\right)+4x^2y^2\)
Ta có: \(2\left(x^2+y^2\right)=1+xy\)
\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)
\(P=7\left(x^4+y^4\right)+4x^2y^2\)
\(=7x^4+7y^4+4x^2y^2\)
\(\Rightarrow P=28x^3+28y^3+16xy\)
\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)
\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)
Cho các số thực dương thõa mãn \(\sqrt[]{xy}+\sqrt[]{yz}+\sqrt[]{xz}=\sqrt[]{xyz}\)
Tìm Min của P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
với hai số dương x, y thỏa mãn x>=2y tìm min M=(x^2+y^2)/xy.
nhân M vs 4 đc \(\frac{3x^2+\left(x-2y\right)^2+4xy}{xy}=\frac{3x}{y}+\frac{\left(x-2y\right)^2}{xy}+4\)
x-2y>=0 và x>=2y => 3x/y>=6 => 4M >=10
1) cho ba số thực dương x,y,z thõa mãn : x + 2y +3z = 2
Tìm giá trị lớn nhất của biểu thức :
S = \(\sqrt{\dfrac{xy}{xy+3z}}+\sqrt{\dfrac{3yz}{3yz+x}}+\sqrt{\dfrac{3xz}{3xz+4y}}\)
tìm cặp số (x,y) thõa mãn đẳng thức :
x^2(x+3)+y^2(y+5)-(x+y)(x^2-xy+y^2)=0
x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0
x2(x+3)+y2(y+5)-(x3+y3)=0
x3+3x2+y3+5y2-x3-y3=0
3x2+5y2=0
Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}3x^2\ge0\\5y^2\ge0\end{cases}}\Rightarrow3x^2+5y^2\ge0}\)
Dấu "=" xảy ra khi 3x2=0 và 5y2=0
+)3x2=0=>x2=0=>x=0
+)5y2=0=>y2=0=>y=0
Vậy x=y=0
Sau khi rút gọn thì được kết quả
\(5y^2+3x^2=0\)
Vì các số hạng đều lớn hơn hoặc bằng 0 Nên buộc x=y=0 rồi