Cho x,y là các số thực thỏa mãn x^2+y^2=1. Tìm MIN và Max của bthuc S= ((x-y)^2-3y^2)/ xy+1
Cho 2 số thực x , y không âm và thỏa mãn
\(x^2+2y=12\)
Tìm giá trị lớn nhất của biểu thức
P = xy
Giải hộ ạk
Cho 2 số thực x,y dương. Tìm GTNN của biểu thức
P=((x+y)^3)/xy^2
Giải hệ phương trình \(\left\{{}\begin{matrix}2x^2-y^2-4\left(x-y\right)=1\\x^2\left(x-2\right)^2+2=\left(xy-2y\right)\left(xy-4x\right)\end{matrix}\right.\)
Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=5\) và x - y + z = 3 . Giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+y-2}{z+2}\) bằng
A. \(\dfrac{1}{2}\) B. \(0\) C. \(\dfrac{-36}{23}\) D. \(\dfrac{-13}{4}\)
Cho x,y là hai số thực thỏa mãn x > y
và xy = 1000. Biết biểu thức \(F=\frac{x^2+y^2}{x-y}\)
đạt giá trị nhỏ nhất khi \(\hept{\begin{cases}x=a\\y=b\end{cases}}\)
Tinh \(P=\frac{a^2+b^2}{1000}\)
Hệ phương trình \(\left\{{}\begin{matrix}x^2y+xy^2=6\\x^3+y^3=9\end{matrix}\right.\) với x > y có bao nhiêu nghiệm?
A. 2
B. 1
C. 4
D. 3
Tập nghiệm của hệ phương trình x+xy+y=2,x2+y2+xy=4 là
tìm min của \(y=\frac{x^2+4x+4}{x}\)