Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Phạm Ngọc Phước
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
yencba
Xem chi tiết
to tien cuong
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Khách vãng lai đã xóa
Lê Đức Thành
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Khách vãng lai đã xóa
Đào Danh Bắc
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2021 lúc 22:16

a)

ĐKXĐ: \(x\notin\left\{0;3;-3\right\}\)

Ta có: \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)

\(=\left(\dfrac{1}{3}+\dfrac{3}{x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right)\)

\(=\left(\dfrac{x\left(x-3\right)}{3x\left(x-3\right)}+\dfrac{9}{3x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}:\dfrac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}\cdot\dfrac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-x-3}{x}\)

b) Để A nguyên thì \(-x-3⋮x\)

mà \(-x⋮x\)

nên \(-3⋮x\)

\(\Leftrightarrow x\inƯ\left(-3\right)\)

\(\Leftrightarrow x\in\left\{1;-1;3;-3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;-1\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{1;-1\right\}\)

Phương Hà
Xem chi tiết
Dũng Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:18

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 14:44

a: \(B=\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
8 tháng 12 2021 lúc 14:49

a) B = \(\dfrac{x+1}{x}-\dfrac{2}{x-1}+\dfrac{3x+1}{x\left(x-1\right)}\) (ĐK: \(x\ne0;1\))

\(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}-\dfrac{2x}{x\left(x-1\right)}+\dfrac{3x+1}{x\left(x-1\right)}\)

\(\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

b) \(\left|x\right|=1< =>\left[{}\begin{matrix}x=1\left(L\right)\\x=-1\left(C\right)\end{matrix}\right.\)

Thay x = -1 vào B, ta có:

\(\dfrac{-1+1}{-1-1}=0\)

c) B nguyên <=> \(\dfrac{x+1}{x-1}\) nguyên <=> \(1+\dfrac{2}{x-1}\) nguyên

<=> 2\(⋮x-1\)

<=> x-1 \(\in\left\{-2;-1;1;2\right\}\)

x-1-2-112
x-1023
 CLCC

KL: x \(\in\left\{-1;2;3\right\}\)

 

Hùng Chu
Xem chi tiết