Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuyết Ly

Cho biểu thức B = \(\dfrac{x+1}{x}+\dfrac{2}{1-x}+\dfrac{3x+1}{x^2-x}\)

 a) Rút gọn B

b) Tìm B biết |x| = 1

c) Tìm các giá trị nguyên của x để B nhận giá trị nguyên. 

Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 14:44

a: \(B=\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
8 tháng 12 2021 lúc 14:49

a) B = \(\dfrac{x+1}{x}-\dfrac{2}{x-1}+\dfrac{3x+1}{x\left(x-1\right)}\) (ĐK: \(x\ne0;1\))

\(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}-\dfrac{2x}{x\left(x-1\right)}+\dfrac{3x+1}{x\left(x-1\right)}\)

\(\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

b) \(\left|x\right|=1< =>\left[{}\begin{matrix}x=1\left(L\right)\\x=-1\left(C\right)\end{matrix}\right.\)

Thay x = -1 vào B, ta có:

\(\dfrac{-1+1}{-1-1}=0\)

c) B nguyên <=> \(\dfrac{x+1}{x-1}\) nguyên <=> \(1+\dfrac{2}{x-1}\) nguyên

<=> 2\(⋮x-1\)

<=> x-1 \(\in\left\{-2;-1;1;2\right\}\)

x-1-2-112
x-1023
 CLCC

KL: x \(\in\left\{-1;2;3\right\}\)

 


Các câu hỏi tương tự
Phương Anh
Xem chi tiết
Tuyết Ly
Xem chi tiết
Hikari
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Tuyết Ly
Xem chi tiết
Tuyết Ly
Xem chi tiết
Tuyết Ly
Xem chi tiết
thùy linh
Xem chi tiết
Hoang Phương Nguyên
Xem chi tiết