a: Sửa đề: \(N=\frac{x+1}{x+3}-\frac{2}{x-3}+\frac{5x+3}{x^2-9}\)
ĐKXĐ: x<>3; x<>-3
Ta có: \(N=\frac{x+1}{x+3}-\frac{2}{x-3}+\frac{5x+3}{x^2-9}\)
\(=\frac{\left(x+1\right)\left(x-3\right)-2\left(x+3\right)+5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2-2x-3-2x-6+5x+3}{\left(x-3\right)\left(x+3\right)}=\frac{x^2+x-6}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x+3\right)\left(x-2\right)}{\left.\left(x-3\right)\left(x+3\right)\right.}=\frac{x-2}{x-3}\)
b:
ĐKXĐ: x<>3; x<>-3; x<>2
\(P=M\cdot N\)
\(=\frac{x+1}{x-2}\cdot\frac{x-2}{x-3}=\frac{x+1}{x-3}\)
Để P là số nguyên thì x+1⋮x-3
=>x-3+4⋮x-3
=>4⋮x-3
=>x-3∈{1;-1;2;-2;4;-4}
=>x∈{4;2;5;1;7;-1}
Kết hợp ĐKXĐ, ta được: x∈{4;5;1;7;-1}