Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Danh Bắc
Cho biểu thức A=(1/3 + 3/x^2-3x):(x^2/27-3x^2+1/x+3) a) rút gọn A Tìm điều kiện xác định của A ( làm từng bước ) b) tìm x nguyên để A nhận giá trị nguyên
Nguyễn Lê Phước Thịnh
14 tháng 1 2021 lúc 22:16

a)

ĐKXĐ: \(x\notin\left\{0;3;-3\right\}\)

Ta có: \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)

\(=\left(\dfrac{1}{3}+\dfrac{3}{x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right)\)

\(=\left(\dfrac{x\left(x-3\right)}{3x\left(x-3\right)}+\dfrac{9}{3x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}:\dfrac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}\cdot\dfrac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-x-3}{x}\)

b) Để A nguyên thì \(-x-3⋮x\)

mà \(-x⋮x\)

nên \(-3⋮x\)

\(\Leftrightarrow x\inƯ\left(-3\right)\)

\(\Leftrightarrow x\in\left\{1;-1;3;-3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;-1\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{1;-1\right\}\)


Các câu hỏi tương tự
Linh Linh
Xem chi tiết
Châu Hiền
Xem chi tiết
tút tút
Xem chi tiết
Pham Nguyen Gia Bao
Xem chi tiết
Đã Ẩn
Xem chi tiết
Ngọc Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết