So sánh: A= \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)và B=2
so sánh hai số:A=1 và B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{99^2}+\frac{1}{100^2}\)
Ta có:B=1/2^2+1/3^2+...+1/100^2<1/1*2+1/2*3+...+1/99*100
B<1-1/100<1
Mà A=1
Nên B<A
k cho mình với nha
1:
a) Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) . So sánh A và \(\frac{199}{100}\)
b) Tìm tích: \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.\frac{24}{5^2}.....\frac{99}{10^2}\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
A < 1 - \(\frac{1.}{100}\)
A < \(\frac{99}{100}< \frac{199}{100}\)
=> A < \(\frac{199}{100}\)
b,
S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)
S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)
S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)
S = \(\frac{1.11}{2.10}\)
S = \(\frac{11}{20}\)
So sánh A ;B : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2};B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)
Ta có:
\(2^2<4^2\Rightarrow\frac{1}{2^2}>\frac{1}{4^2}\)
\(3^2<6^2\Rightarrow\frac{1}{3^2}>\frac{1}{6^2}\)
\(4^2<8^2\Rightarrow\frac{1}{4^2}<\frac{1}{8^2}\)
\(...\)
\(100^2<200^2\Rightarrow\frac{1}{100^2}>\frac{1}{200^2}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)
\(\Rightarrow A>B\)
A>B vì mẫu số càng nhỏ thì phân số càng lớn
Cho \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}};B=\frac{1}{2}\).so sánh A và B
Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}$
$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$
$\Rightarrow 3A-A=1-\frac{1}{3^{100}}$
$\Rightarrow 2A=1-\frac{1}{3^{100}}<1$
$\Rightarrow A< \frac{1}{2}$
$\Rightarrow A< B$
So sánh \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2};B=\frac{1}{4^2}+\frac{1}{6^2}+...\frac{1}{200^2^{ }}\)
A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\) Tính A và so sánh A với 1
So sánh a và b
A= \(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+......+\(\frac{1}{2^{100}}\)
B= 1
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
B=\(\frac{3}{4}\)
So sánh A và B
a) So sánh: A=\(\frac{100^{2009}+1}{100^{2008}+1}\)và B=\(\frac{100^{2010}+1}{100^{2009}+1}\)
b) Chứng minh rằng: \(\frac{1}{6}\)<\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+\(\frac{1}{7^2}\)+...+\(\frac{1}{100^2}\)<\(\frac{1}{4}\)
\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
So sánh : \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\) và B = 100
Hình như bạn hơi nhầm đề bài . Nếu B là 10 thì mình biết .
Nhận thấy : \(\frac{1}{\sqrt{1}}\)>\(\frac{1}{\sqrt{100}}\); \(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\);...: \(\frac{1}{\sqrt{100}}\)=\(\frac{1}{\sqrt{100}}\)
<=> A= \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{\sqrt{100}}\)+\(\frac{1}{\sqrt{100}}\)+...+\(\frac{1}{\sqrt{100}}\)( 100 số \(\frac{1}{\sqrt{100}}\))
Hay : A > \(\frac{1}{\sqrt{100}}\).100
<=> A > 10
<=> A>B
Nếu không đúng mong bạn thông cảm nhé !!