Giải bpt
\(\frac{2}{x}-\frac{1}{2}>\sqrt{\frac{4}{x^2}-\frac{3}{4}}\)
Giải bpt
a) \(\frac{3}{\sqrt{x-2}-1}\ge\frac{5}{\sqrt{x-2}-3}\)
b) \(x\sqrt{x-3}-\frac{\sqrt{x-3}}{2-x}\le0\)
c) \(\frac{2\sqrt{x-1}-4}{\sqrt{4-x^2}-1}\ge2-\sqrt{x-1}\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)
\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)
\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)
\(\Leftrightarrow1< t< 3\)
\(\Rightarrow1< \sqrt{x-2}< 3\)
\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)
b/
ĐKXĐ: \(x\ge3\)
- Với \(x=3\) BPT thỏa mãn
- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương
\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn
Vậy BPT có nghiệm duy nhất \(x=3\)
c/
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\4-x^2\ge0\\\sqrt{4-x^2}\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\-2\le x\le2\\x\ne\pm\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2\\x\ne\sqrt{3}\end{matrix}\right.\)
BPT tương đương:
\(\frac{2\left(\sqrt{x-1}-2\right)}{\sqrt{4-x^2}-1}+\sqrt{x-1}-2\ge0\)
\(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\frac{2}{\sqrt{4-x^2}-1}+1\right)\ge0\)
Do \(x\le2\Rightarrow\sqrt{x-1}\le1\Rightarrow\sqrt{x-1}-2< 0\)
BPt tương đương:
\(\frac{2}{\sqrt{4-x^2}-1}+1\le0\)
\(\Leftrightarrow\frac{1+\sqrt{4-x^2}}{\sqrt{4-x^2}-1}\le0\)
\(\Leftrightarrow\sqrt{4-x^2}-1< 0\) (do \(1+\sqrt{4-x^2}>0\) \(\forall x\))
\(\Leftrightarrow\sqrt{4-x^2}< 1\Leftrightarrow x^2>3\Rightarrow x>\sqrt{3}\)
Vậy nghiệm của BPT đã cho là: \(\sqrt{3}< x\le2\)
giải bpt g: \(2\sqrt{\frac{x^2+x+1}{x+4}}+x^2-3\le\frac{2}{\sqrt{x^2+1}}\)
giải BPT : a) \(\sqrt{11+x}+\sqrt{1-x}< 2-\frac{x^2}{4}\)
b) \(x+\frac{2x}{\sqrt{x^2-4}}>3\sqrt{5}\)
c) \(\left(x+2\right)\sqrt{4-x^2}=< -2x-8\)
a/ ĐKXĐ: ....
\(VT=\sqrt{11+x}+\sqrt{1-x}\ge\sqrt{11+x+1-x}=\sqrt{12}\)
\(VP=2-\frac{x^2}{4}\le2< \sqrt{12}\)
\(\Rightarrow VP< VT\Rightarrow\) BPT vô nghiệm
b/
ĐKXĐ: ...
- Với \(x\le0\Rightarrow VT\le0< VP\Rightarrow\) BPT vô nghiệm
- Với \(x>0\) \(\Rightarrow x>2\) hai vế đều dương, bình phương:
\(x^2+\frac{4x^2}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}>45\)
\(\Leftrightarrow\frac{x^4}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}-45>0\)
Đặt \(\frac{x^2}{\sqrt{x^2-4}}=t>0\)
\(\Rightarrow t^2+4t-45>0\Rightarrow\left[{}\begin{matrix}t< -9\left(l\right)\\t>5\end{matrix}\right.\)
\(\Rightarrow\frac{x^2}{\sqrt{x^2-4}}>5\Leftrightarrow x^4>25\left(x^2-4\right)\)
\(\Leftrightarrow x^4-25x^2+100>0\Rightarrow\left[{}\begin{matrix}x^2< 5\\x^2>20\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2< x< \sqrt{5}\\x>2\sqrt{5}\end{matrix}\right.\)
c/
ĐKXĐ: \(-2\le x\le2\)
Do \(-2\le x\le2\Rightarrow x+2\ge0\Rightarrow VT\ge0\) \(\forall x\)
Mà \(VP=-2x-8=-2\left(x+2\right)-4\le-4< 0\)
\(\Rightarrow VP< VT\)
Vậy BPT đã cho vô nghiệm
Giải BPT
\(\frac{\sqrt{-x^2+x+6}}{2x+5}\le\frac{\sqrt{-x^2+x+6}}{x+4}\)
ĐKXĐ: \(-2\le x\le3\)
Do trên \(\left[-2;3\right]\) cả \(2x+5\) và \(x+4\) đều dương nên BPT tương đương:
\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)
bài 1giải bpt
a) \(\frac{x+2}{3}-x+1>x+3\)
b) \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
c) \(\frac{\left(x-2\right)\sqrt{x-1}}{\sqrt{x-1}}< 2\)
bài 2 \ giải hệ bpt
a) \(\left\{{}\begin{matrix}2-x>0\\2x+1>x-2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{2x-1}{3}< -x+1\\\frac{4-3x}{2}< 3-x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
Mgọi người giúp mình với ạ
Giải bpt:
\(\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}>\frac{x-1}{2}\)
Giải bpt
\(\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}>\frac{x-1}{2}\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Giải bpt
\(\frac{x^2}{\left(1+\sqrt{1+x}\right)^2}>x-4\)
- Với \(x< 4\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge4\) BPT tương đương:
\(\frac{x^2\left(\sqrt{x+1}-1\right)^2}{\left(\sqrt{x+1}+1\right)^2\left(\sqrt{x+1}-1\right)^2}>x-4\)
\(\Leftrightarrow\frac{x^2\left(x+2-2\sqrt{x+1}\right)}{x^2}>x-4\)
\(\Leftrightarrow x+2-2\sqrt{x+1}>x-4\)
\(\Leftrightarrow\sqrt{x+1}< 3\Leftrightarrow x+1< 9\)
\(\Rightarrow x< 8\)
Vậy nghiệm của BPT là \(-1\le x< 8\)