cho tam giác ABC, có 3 đường cao AH, BK,CI, chứng minh: BC2 =BA.BI + CK.CA
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có đường cao BK và CI cắt nhau tại H.
a. Chứng minh BI.BA+CK.CA= BC2
Gọi giao của AH với BC là E
=>AH vuông góc BC tại E
Xét ΔBIC vuông tại I và ΔBEA vuông tại E có
góc EBA chung
=>ΔBIC đồng dạng với ΔBEA
=>BI/BE=BC/BA
=>BE*BC=BA*BI
Xét ΔCKB vuông tại K và ΔCEA vuông tại E có
góc KCB chung
=>ΔCKB đồng dạng với ΔCEA
=>CK/CE=CB/CA
=>CK*CA=CE*CB
BI*BA+CK*CA
=BE*BC+CE*BC
=BC^2
cho tam giác ABC có các đường cao BK và CI cắt nhau tại H.
a) chứng minh AI.AB=AK.AC
b) chứng minh Δ AIK và Δ ACB đồng dạng
c) chứng minh BI.BA+CK.CA=BC2
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
cho tam giác ABC có ba góc nhọn. Gọi O là giao điểm của ba đường cao AH, BK, CI. chứng minh:
a, OK.OB = OI.OC
b, tam giác OIB đồng dạng với tam giác OKC
c, tam giác BOH đồng dạng với tam giác BCK
d, BO.BK + CO.CI = BC2
a,b: Xét ΔOIB vuông tạiI và ΔOKC vuông tại K có
góc IOB=góc KOC
=>ΔOIB đồng dạng vơi ΔOKC
=>OI/OK=OB/OC
=>OI*OC=OK*OB
c: Xét ΔBOH vuông tại H và ΔBCK vuông tại K có
góc OBH chung
=>ΔBOH đồng dạng với ΔBCK
d: Xét ΔCHO vuông tại H và ΔCIB vuông tại I có
góc HCO chung
=>ΔCHO đồng dạng với ΔCIB
=>CH/CI=CO/CB
=>CH*CB=CI*CO
ΔBOH đồng dạng với ΔBCK
=>BO/BC=BH/BK
=>BO*BK=BH*BC
BO*BK+CO*CI=BH*BC+CH*BC=BC^2
a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có
góc C chung
=>ΔCHA đồng dạng với ΔCKB
b: Xét ΔCAB có
AH,BK là đừog cao
AH cắt BK tại D
=>D là trực tâm
=>CD vuông góc AB tại E
góc CHA=góc CEA=90 độ
=>CHEA nội tiếp
=>góc BHE=góc BAC
mà góc HBE chung
nên ΔBEH đồng dạng với ΔBAC
c: góc KHD=góc ACE
góc EHA=góc KBA
mà góc ACE=góc KBA
nên góc KHD=góc EHD
=>HA là phân giác của góc EHK
Cho tam giác ABC nhọn, có AH và BK là đường cao, AH cắt BK tại E
a) Chứng minh: tam giác AEK ~ tam giác AHC
b) Chứng minh: CK.CA bằng CH.CB
c) Phân giác của góc CAH cắt BK tại I, cắt BC tại F
Chứng minh: IE/IK bằng FC/FH
d) Cho góc ACB bằng 60 độ, Diện tích tam giác ABC bằng 60cm2
Tính diện tích CHK
Mình làm đc abc rồi, còn d thôi
Help me
Cho tam giác ABC; các đường cao AH, BK, CI cắt nhau tại O.
a)Chứng minh AI.AB=AK.AC
a Xét \(\Delta ABK\) và \(\Delta ACI\) có:
\(\Lambda BAK=\Lambda CAI\left(gt\right)\)
\(\Lambda AKB=\Lambda AIC=90^0\left(gt\right)\)
\(\Rightarrow\Delta ABK\sim\Delta ACI\left(g.g\right)\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AI}\Rightarrow AB\cdot AI=AC\cdot AK\)
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
Cho tam giác nhọn ABC, hai đường cao AH, BK.
a) Chứng minh CH.CB = CK.CA
b) Chứng minh ∆CHK đồng dạng với ∆CAB
c) Biết góc C = 60°, S CAB = 100cm², tính S CHK
Cho tam giác ABC, đường cao AH. Chứng minh: AB2+AC2=BC2
cho tam giác ABC có ba góc nhọn,AB < AC hai đường cao BK và CI cắt nahu tại AH cắt BC tại D chứng minh tam giác ABK đồng dạng vs tam giác ACI và AK/AB=AI/AC
Xét tam giác \(ABK\) và tam giác \(ACI\) ta có:
\(\widehat{A}\) chung
\(\widehat{AKB}=\widehat{AIC}\left(=90^o\right)\)
Suy ra \(\Delta ABK~\Delta ACI\left(g.g\right)\)
suy ra \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{AI}{AC}\).