cho tam giác abc có góc b = 75 độ đường cao ah bằng 1/2 bc chứng minh tam giác abc cân
Cho tam giác ABC có góc B bằng 75 độ, đường cao AH = \(\frac{1}{2}\)BC. Chứng minh tam giác ABC cân.
cho tam giác abc có góc bac bằng 75 độ, đường cao ah bằng nửa bc, cm tam giác abc cân
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
1)
Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.
a) Chứng minh CH vuông góc AB
b) Tính góc BHD và góc DHE?
2)
Bài 1: Cho tam giác ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.
1) Chứng minh hai tam giác ABH và ACH bằng nhau
2) Tìm độ dài đoạn AH?
c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?
Tam giác ABC có đường cao HB bằng nửa cạnh AC và góc A = 75 độ. Chứng minh rằng tam giác ABC cân
cho tam giác ABC, góc A > 50 độ, góc B>góc C. Đường trung trực của BC cắt AC tại D. Đường thẳng BD cắt đường cao AH của tam giác ABC tại E ( H thuộc BC ). Chứng minh tam giác AED cân.
Tam giác ABC có AB= 9cm, AC=12cm, BC=15cm
a) Chứng minh tam giác ABC vuông tại A
b) Đường phân giác góc B cắt AC tại D. Tính độ dài AD, AC
c) Đường cao AH cắt BD tại I. Chứng minh AB.BI=BH2
d) Chứng minh tam giác AID cân
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
cho tam giác ABC cân taih A ( góc A < 90 độ ) , có đường cao BE và CE . Cắt nhau tại H .
a) Chứng minh tam giác AEB = tan giác AFC
b) Chứng minh AH vuông góc vs BC
c) Gọi D là giao điểm của đường thẳng AH và BC . Chứng minh rằng tam giác DEF là tam giác cân
a, Xét \(\Delta AEB\)và \(\Delta AFC\)có :
\(+,\widehat{A}\)chung
\(+,AB=AC\)( \(\Delta ABC\)cân tại A )
\(+,\widehat{ABE}=\widehat{ACE}\left(\widehat{AEB}=\widehat{AFC}=90^0\right)\)
\(\Rightarrow\Delta AEB=\Delta AFC\)
b, \(\Delta AEB=\Delta AFC\left(cmt\right)\)
\(\Rightarrow AF=AE\)
Xét \(\Delta AEH\)và \(\Delta AFH\)có :
\(+,\widehat{AFH}=\widehat{AEH}=90^0\)
\(+,AF=AE\) \(\hept{\begin{cases}\\\Rightarrow\Delta AFH=\Delta\\\end{cases}AEH\left(c.c.c\right)}\)
\(+,AH\)chung
\(\Rightarrow\widehat{FAH}=\widehat{AEH}\)
\(\Rightarrow\)AH là tia phân giác của của góc \(\widehat{A}\)
Mặt khác \(\Delta ABC\)cân tại A
\(\Rightarrow AH\perp BC\)
c, Tự làm nhé ..
Cho tam giác abc vuông tại a, đường cao ah. Phân giác góc Abc cắt ah tại d. Kẻ dm song song với ac , m thuộc ab. Đường thẳng dm cắt bc tại n 1 chứng minh bmd = bhd và tam giác Bmh cân 2. Chứng minh tam giác adn cân và an là phân giác của góc HAC