cho P=(2x^2-3x-2)/(x^3-2x^2+2x-4)
a rút gọn P
b tính giá trị biểu thức P,biết giá trị của x thỏa mãn/x-1/=4
Cho biểu thức : A= x-1/3x và B= ( x+1/2x-2 + 3x-1/x2 - 1 - x+3/2x+2) : 3/x+1 Với x # 0,x# -1,1.
a)Rút gọn biểu thức B
b)Tính giá trị của biểu thức A khi x thỏa mãn x2 - 2x = 0
c) tìm giá trị của x để B/A đạt giá trị nhỏ nhất .
b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)
cho biểu thức A=(2+x/2-x - 4x^2/x^2+4) - 2-x/2+x):(x^2-3x/2x^2-x^3)
a)tìm điều kiện xác định rồi rút gọn biểu thức A
b)tìm giá trị của x để A>0
C)tính giá trị của A khi x thỏa mãn |x-7|=4
Bài 1:
\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)
\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)
\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Bài 2:
\(P=\left|2-x\right|+2y^4+5\)
Ta thấy:
\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)
\(\Rightarrow\left|2-x\right|+2y^4\ge0\)
\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)
\(\Rightarrow P\ge5\)
Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)
Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)
Bài 4:
2(2x+x2)-x2(x+2)+(x3-4x+13)
=2x2+4x-x3-2x2+x3-4x+13
=(2x2-2x2)+(4x-4x)-(-x3+x3)+13
=13
Cho biểu thức B=(2x+1/2x-1 + 4/1-4x^2 - 2x-1/2x+1)2x+1/x+2
a)Tìm điều kiện của x để biểu thức B được xác định
b)Rút gọn B
c)Tính giá trị của biểu thức B tại x thỏa mãn lx-1l=3
d)Tìm giá trị nguyên của x để B nhận giá trị nguyên
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)
cho biểu thức P=(x+3/x^2-5x-1/x+2/x-5)/(x+4/x)
a) Rút gọn Biểu thức P.
b) Tính giá trịP, biết x thỏa mãn |2x+3|=5
c) tìm tất cả các giá trị của x để P có giá trị là số âm.
1. Giá trị lớn nhất của biểu thức A=-2x^2+x-5
2. Giá trị của x thỏa mãn x(x-1)-(x+1)^2=4
3. Giá trị rút gọn của (x-1)(x+2)-(x+1)x
\(1)\)
\(A=-2x^2+x-5\)
\(-2A=\left(4x^2-2x+\frac{1}{4}\right)+\frac{39}{4}\)
\(-2A=\left(2x-\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)
\(A=\frac{\left(2x-\frac{1}{2}\right)^2+\frac{39}{4}}{-2}\le\frac{39}{4}:\left(-2\right)=\frac{-39}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy GTLN của \(A\) là \(\frac{-39}{8}\) khi \(x=\frac{1}{4}\)
Chúc bạn học tốt ~
Cho biểu thức: A=\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A khi x = -2 và x = 4.
c) Tìm x biết A = 3.
d) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Cho A=2x+1/2x-1-2x-1/2x+1+4/1-x^2 và B=2x+1/x+2 với x khác 1/2;x khác -1/2;x khác 2;x khác -2
a)Rút gọn A
b)Tính giá trị của biểu thức Q=A.B tại x thỏa mãn lx-1l=3
c)Tìm các giá trị nguyên của x để biểu thức Q nhận giá trị nguyên
d)Tìm x để Q=-1
e)Tìm x để Q>0