Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
w1daniel
Xem chi tiết
Huỳnh Từ Hoàng Nghi
Xem chi tiết
Phong Dang
Xem chi tiết
Đinh Đức Hùng
6 tháng 3 2018 lúc 19:55

\(PT\Leftrightarrow\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-1}{1008}-2\right)+\left(\frac{x}{2017}-1\right)\)

\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}=\frac{x-2017}{1008}+\frac{x-2017}{2017}\)

\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}-\frac{x-2017}{1008}-\frac{x-2017}{2017}=0\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{2017}\right)=0\)

\(\Rightarrow x=2017\)

Rita Yoo
Xem chi tiết
Không Tên
11 tháng 2 2018 lúc 19:39

b)       \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt   \(x^2+3x=t\)   ta có:

          \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow\)\(t^2+2t-24=0\)

\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)

đến đây bn giải tiếp

Nguyễn Dương Thành Đạt
Xem chi tiết
Akai Haruma
31 tháng 7 2021 lúc 10:32

1.

ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$

PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)

\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)

\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)

Akai Haruma
31 tháng 7 2021 lúc 10:33

2.

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$

$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}=0$

$\Leftrightarrow x=0$

Thử lại thấy thỏa mãn 

Vậy $x=0$

 

Akai Haruma
31 tháng 7 2021 lúc 10:44

3.

ĐKXĐ: $x\geq -1$

PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)

\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)

\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)

\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)

Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$

$\Rightarrow x^2+4034+5> 4x+4034$

$\Rightarrow \text{VP}> \text{VT}$

Do đó pt vô nghiệm.

 

0o0 Công Chúa cute 0o0
Xem chi tiết
Nguyễn Phương Trung
22 tháng 8 2016 lúc 9:00

D. Tìm x thuộc Z biết 

x+(x+1)+(x+2)+....+2016+2017=2017 

=> ( x + x + x + ..+ x ) + ( 1 + 2 + 3+...+2016 + 2017 ) = 2017 

<=> 2017x + 2035153 = 2017 

=> 2017x = -2033136

=> x = -1008

Vậy ...

0o0 Công Chúa cute 0o0
23 tháng 8 2016 lúc 10:37

cảm ơn bạn nhưng bạn có biết những câu hỏi còn lại ko

Lê Minh Quân
Xem chi tiết
Khởi My Dễ Thương
27 tháng 3 2017 lúc 11:22

đề bài là gì vậy

Triệu Hải Dương
Xem chi tiết
Nguyễn Viết Gia Vỹ
9 tháng 4 2023 lúc 19:36

chắc là bằng 0 á

 

Nguyễn Viết Gia Vỹ
9 tháng 4 2023 lúc 19:37

bằng 1008/2017

Luật Lê Bá
Xem chi tiết
Luật Lê Bá
14 tháng 7 2017 lúc 10:37

Ai giúp với

Luật Lê Bá
14 tháng 7 2017 lúc 14:12

làm câu 2 là đc