giải pt (x-2017)^3+(x+2015)^3=8(x-1)3
giải pt (x-2017)^3+(x+2015)^3=8(x-1)^3
mọi người giải giúp mình với
Giải pt: \(\frac{x-3}{2014}+\frac{x-2}{2015}=\frac{x-1}{1008}+\frac{x}{2017}-1\)
\(\frac{x-3}{2014}+\frac{x-2}{2015}=\frac{x-1}{1008}+\frac{x}{2017}-1\)
Hãy giải pt này
\(PT\Leftrightarrow\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-1}{1008}-2\right)+\left(\frac{x}{2017}-1\right)\)
\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}=\frac{x-2017}{1008}+\frac{x-2017}{2017}\)
\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}-\frac{x-2017}{1008}-\frac{x-2017}{2017}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{2017}\right)=0\)
\(\Rightarrow x=2017\)
Giải các pt sau:
a, (4x-1)(x+5)=(2x-3)^2
b, x(x+1)(x+2)(x+3)=24
c, x^2-2x+1=3x(x-1)
d,\(\frac{x+1}{2017}+\frac{x+2}{2015}=\frac{x+2014}{3}+\frac{x+2013}{4}\)
b) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)
đến đây bn giải tiếp
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
3.
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)
\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)
\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)
\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)
Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$
$\Rightarrow x^2+4034+5> 4x+4034$
$\Rightarrow \text{VP}> \text{VT}$
Do đó pt vô nghiệm.
Các bạn giải giùm mik cái nha mik gấp lắm rồi
1/Tính tổng
a,1+(-2)+(-3)+4+5+(-6)+(-7)+8+...+2013-2014-2016+2017
b.Tính
1+(-3)+(-7)+....+97+(-99)+101)
c.Tìm x thuộc Z biết
2017=2017+2016+2015+....+x
d.Tìm x thuộc Z biết
x+(x+1)+(x+2)+....+2016+2017=2017
D. Tìm x thuộc Z biết
x+(x+1)+(x+2)+....+2016+2017=2017
=> ( x + x + x + ..+ x ) + ( 1 + 2 + 3+...+2016 + 2017 ) = 2017
<=> 2017x + 2035153 = 2017
=> 2017x = -2033136
=> x = -1008
Vậy ...
cảm ơn bạn nhưng bạn có biết những câu hỏi còn lại ko
(2/3 +3/4 +4/5+...+ 2016/2017) x ( 1/2+ 2/3+ 3/4+... + 2015/2016) - ( 1/2 + 2/3+ 3/4+ .... +2016/2017) x ( 2/3+ 3/4+ 4/5+... + 2015/2016) = ?
Giải chi tiết giúp mình nhé,
đề này hơi dài và hơi khó :
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - (1/2 + 2/3 + 3/4 +...+ 2016/2017) x (2/3 + 3/4 +4/5 + ... + 2015/2016) = ???
mong mn giải hộ -(ToT)- huhuhuhu
Giải pt:1, \(\sqrt[3]{3x^2-x+2015}-\sqrt[3]{3x^2-7x+2016}-\sqrt[3]{6x-2017}=\sqrt[3]{2016}\) 2, \(x^2-x-1000\sqrt{1+8000x}=1000\) 3, \(x+2=3\sqrt{1-x^2}+\sqrt{1+x}\) Mấy bài này thấy khó nên chưa làm thử có j mn giúp