Cho a,b>0 và ab=6. Chứng minh \(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)
cho a b và ab = 6 chứng minh \(\frac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
Ta có:
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\frac{\left|a-b\right|^2+12}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{12}=4\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}ab=6\\\left|a-b\right|=\frac{12}{\left|a-b\right|}\end{cases}}\) Em tự tìm a và b nhé!
Cho \(a\ne b\) và ab=6. Chứng minh rằng: \(\frac{a^2+b^2}{|a-b|}\ge4\sqrt{3}\)
cho a,b và ab=6 . Chứng minh rằng \(\frac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
ai làm đúng mik tick
fan FA chó cái cục shit nhà bạn :))
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
Áp dụng BĐT AM-GM cho 2 số không âm:
\(VT\ge2\sqrt{\left|a-b\right|\cdot\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)
Dấu "=" tự xét.
Ta có
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
áp dụng bất đẳng thức Cô si
\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|.\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)
lại bất giải thưởng tháng r . thằng nào hack của t giả đi .WHy not me nè
Cho a\(\ne b\)và ab=6. Chứng minh \(\frac{a^2+b^2}{|a-b|}\)\(\ge4\sqrt{3}\)
Cho a,b và a.b=6. Chứng minh \(\frac{a^2+b^2}{a-b}\ge4\sqrt{3}\)
Mn giải nhanh giùm mình nhé. MÌNH CẦN RẤT GẤP!!!
\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2ab}{a-b}=a-b+\frac{12}{a-b}\ge2\sqrt{12}=4\sqrt{3}\left(Cauchy\right)\)
Cho a,b và ab=6. Chứng minh \(\dfrac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
Lời giải:
Bổ sung điều kiện $a\neq b$
Ta có: $\frac{a^2+b^2}{|a-b|}\geq 4\sqrt{3}$
$\Leftrightarrow a^2+b^2\geq 4\sqrt{3}|a-b|$
$\Leftrightarrow (a-b)^2+2ab-4\sqrt{3}|a-b|\geq 0$
$\Leftrightarrow |a-b|^2+12-4\sqrt{3}|a-b|\geq 0$
$\Leftrightarrow (|a-b|-2\sqrt{3})^2\geq 0$ (luôn đúng)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $|a-b|=2\sqrt{3}$ và $ab=6$ hay $(a,b)=(3+\sqrt{3}, 3-\sqrt{3})$ và hoán vị
Cho a , b biết ab = 6 . Chứng minh rằng : \(\dfrac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
Lời giải:
Do $ab=6$ nên \(a^2+b^2=(a-b)^2+2ab=(a-b)^2+12\)
Đặt \(|a-b|=t(t>0)\). Khi đó:
\(\frac{a^2+b^2}{|a-b|}=\frac{(a-b)^2+12}{|a-b|}=\frac{t^2+12}{t}=\frac{t^2-4\sqrt{3}t+12}{t}+4\sqrt{3}\)
\(=\frac{(t-2\sqrt{3})^2}{t}+4\sqrt{3}\geq 4\sqrt{3}\) với mọi \(t>0\)
Ta có đpcm
Dấu "=" xảy ra khi \(\left\{\begin{matrix} ab=6\\ |a-b|=t=2\sqrt{3}\end{matrix}\right.\)
Lời giải hoành tránh
loại trên mây có biết sai ở đâu không
nếu là lời giải của hs lớp 6 thì tạm chấp nhận
lời giải của GV chửi cho ngu như con BÒ . nếu không muôn chửi là ngu thì sửa lời giải đi
mà loại mày Akai Harumasao biết sai ở đâu mà sửa
cho a, b và ab = 6 . Chứng minh rằng : \(\frac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
AI GIẢI NHANH MIK TICK CHO 3 CÁI , OK , MIK CẦN GẤP , GIÚP NHÉ , CẢM ƠN TRƯỚC NHA ....
bạn lên học 24h nha , ở đó giáo viên sẽ giải cho bạn
bài này chỉ cần áp dụng bất đẳng thức cô -si là được thôi
ta có \(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
áp dụng bất đẳng thức cô -si ta được :
\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|+\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)(dpcm)
em chưa hok
biết ab=6 chứng minh \(\frac{a^2+b^2}{\left(a-b\right)}\ge4\sqrt{3}\) [ ( ) là tị tuyệt đối nha ]