giai phuong trinh:
x+3+y=0
giai phuong trinh:x^2+1/x^2+y^2+1/y^2=4
ĐKXĐ: x;y khác 0
Áp dụng bđt AM-GM cho 2 số dương ta có:
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\)\(\ge2\sqrt{x^2.\frac{1}{x^2}}+2\sqrt{y^2.\frac{1}{y^2}}=2+2=4\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x^2=\frac{1}{x^2}\\y^2=\frac{1}{y^2}\end{matrix}\right.\)<=>\(\left\{\begin{matrix}x^4=1\\y^4=1\end{matrix}\right.\)<=>\(\left\{\begin{matrix}\left[\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y)=(1;1) ; (x;y)=(1;-1) ; (x;y)=(-1;1) ; x;y = (-1;-1)
x^2 + y^2 + 1/x^2 + 1/y^2 -4 =0
<=> x^2 + 1/x^2 -2 + y^2 +1/y^2 -2 = 0
<=>x^2 -2 + 1/x^2 + y^2 -2 +1/y^2= 0
<=> (x-1/x)^2 +(y-1/y)^2 =0
=> phương trình vô nghiệm do bình phương luôn luôn dương nên hai bình phương cộng lại không thể bằng 0.
giai phuong trinh:x2+1/x2+y2+1/y2=4
<=>x^2-2+1/x^2+y^2-2+1/y^2=0
<=>(x-1/x)^2+(y-1/y)^2=0
<=>x=1/x va y=1/y
=>(x;y) thuoc cong tru 1
vay......
tim cac so nguyen x,y cua phuong trinh:x^2+y^2-xy=x+y+2
\(x^2+y^2-xy=x+y+2\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y-4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=6\)
Vì \(\left(x-y\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-1\right)^2\le6\forall x\)
\(\Rightarrow-\sqrt{6}\le x-1\le\sqrt{6}\)
\(\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Từ đó thay vào tìm các giá trị tương ứng của y.
giai he phuong trinh sau :
x^3 - x^2 y^2 - y^3 + 1 = 0 va x^3 + xy - 2 = 0
giai phuong trinh
a)2x^2 + 3xy + y^2 = 0
b) (x+1)(x+3)(x+5)(x+7)+15=0
b) (x+1)(x+7)(x+3)(x+5)+15=0
=> (x^2+7x+x+7)(x^2+5x+3x+15)+15=0
=> (x^2+8x+7)(x^2+8x+15)+15=0
giai phuong trinh nghiem nguyen:x^4+x^2-y^2-y+20=0
bạn chơi roblox à
\(x^4+x^2-y^2-y+20=0\)
<=> x2(x2+1)-y(y+1)=-20
giai he phuong trinh bang phuong phap cong dai so 3x+y=3 va 3x-y=-3
\(\left\{{}\begin{matrix}3x+y=3\\3x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=0\\3x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x+y=3\\3x-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+y+3x-y=3-3\\3x-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x=0\\3x-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\3.0-y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
giai phuong trinh sau : x^5-x^3y-y+1=0
giai phuong trinh
2x^2 + 3xy + y^2 = 0
\(2x^2+3xy+y^2=0\)
\(\Rightarrow2x^2+2xy+xy+y^2=0\)
\(\Rightarrow2x\left(x+y\right)+y\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(2x+y\right)=0\)
\(2x^2+3xy+y^2=0\)
\(\Leftrightarrow x^2+x^2+2xy+xy+y^2=0\)
\(\Leftrightarrow\left(x^2+xy\right)+\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow x\left(x+y\right)+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\)
Hoặc \(x+y=0\Leftrightarrow x=-y\left(1\right)\)
Hoặc \(2x+y=0\left(2\right)\)
Thế (1) vào (2) ta có:
\(-2y+y=0\)
\(\Leftrightarrow-y=0\Leftrightarrow y=0\)
\(\Leftrightarrow x=0\left(\text{vì x = -y}\right)\)
Vậy \(x=y=0\)
Ta có : \(2x^2+3xy+y^2=2x^2+2xy+xy+y^2=2x\left(x+y\right)+y\left(x+y\right)=\left(2x+y\right)\left(x+y\right)=0\)
\(=>\orbr{\begin{cases}2x+y=0\\x+y=0\end{cases}=>\orbr{\begin{cases}x=-\frac{y}{2}\\x=-y\end{cases}}}\)
Vậy x=-y hoặc x=-y/2 với mọi x thì 2x^2+3xy+y^2