Cho tam giác ABC có góc A = 90 độ .Trên cạnh AB,AC lần lượt lấy điểm D,E
Chứng minh DE < BC
Cho tam giác ABC có góc A = 90 độ .Trên cạnh AB,AC lần lượt lấy điểm D,E
Chứng minh DE < BC
Nối D và C ta có : E , AC lần lượt là hình chiếu của các hình xiên DE,DC trên đường thẳng AC
Mà AE < AC ( vì E thuộc cạnh AC )
=> DE < DC ( quan hệ giữa đường xiên và hình chiếu của nó )
Mặt khác : AD ;AB lần lượt là hình chiếu của các đường xiên DC,BC trên đường thẳng AB mà AD < AB ( D thuộc cạnh AB )
=> DC < BC ( quan hệ giữa đường xiên và hình chiếu của nó )
Ta có : DE < DC ; DC < BC => DE < BC ( đpcm )
Cho tam giác ABC có góc A = 90 độ. Lấy điểm D trên cạnh AB, lấy E trên cạnh AC. Chứng minh DE < BC.
A=90 độ =>AEC là góc nhọn và CEB là góc tù
Xét tam giác CEB có CEB là góc tù =>BC sẽ là cạnh lớn nhất
=>BC>CE (1)
A=90 độ => ADE là góc nhọn và EDC là góc tù
Xét tam giác EDC có EDC là góc tù => EC sẽ là cạnh lớn nhất trong tam giác
=>EC>DE (2)
Từ (1) và (2) =>DE<BC (BC>CE mà CE lại >DE)
Cho tam giác ABC, góc A=90 độ và AB<AC.Trên cạnh AC lấy điểm D sao cho AD=AB. Trên tia AD lấy điểm E sao cho AE=AC.
a) Chứng minh: DE=BC
b) Chứng minh DE vuông góc với BC
c) Biết 4 lần góc B = 5 lần góc C. Tính góc AED.
Cho tam giác ABC có góc A=90 độ và góc C=45 độ. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Các đường vuông góc với CD vẽ từ A và E lần lượt cắt cạnh BC ở G và H. Chứng minh rằng: BG=GH.
Bài 1: Cho hình thang ABCD có góc A=góc B=90 độ và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC kẻ Mx vuông góc với MA, Mx cắt DC tại N. Chứng minh rằng: Tam giác AMN vuông cân
Bài 2: Cho tam giác ABC với 3 góc nhọn, trong đó góc A=30 độ. Lấy D là điểm bất kì trên BC. Gọi E, F lần lượt là điểm đối xứng của D qua cạnh AB, AC, EF cắt AB, AC theo thứ tự M,N. a) Chứng minh tam giác AEF đều b) Chứng minh DA là phân giác của góc MDN c) DE, DF lần lượt cắt AB, AC tại P,Q chứng minh MN//PQ
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC có góc A bằng 90 độ. Gọi D, M lần lượt là trung điểm của AB, BC trên tia đối của tia DC lấy điểm E sao cho DE = DC, trên tia đối của tia MA lấy điểm N sao cho AM = MN.
a) Chứng minh: tam giác BED =tam giácACD
b) Chứng minh: CN // AB
c) Chứng minh: Ba điểm E, B, N thẳng hàng.
\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)
\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)
\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)
Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng
Bài 4::Cho tam giác ABC có A = 90 độ. Trên hai cạnh AB, AC lần lượt lấy hai điểm D
và E. Chứng minh rằng DE < BC.
Các cậu giúp mình với
ΔAED vuông tại A
=>góc AED<90 độ
=>góc DEC>90 độ
=>DE<DC
góc ADC<90 độ
=>góc CDB<90 độ
=>CD<CB
=>DE<BC
Tam giác ABC có góc A=90°; AB=8cm; AC=6cm. Trên cạnh AC lấy E biết AE=2cm. Trên tia đối của tia AB lấy điểm D sao cho AD=AB.
a) Tính BC.
b) Chứng minh tam giác BEC = tam giác DEC
c) Chứng minh DE đi qua trung điểm của cạnh BC.
cho tam giác ABC có góc A=90 độ và AB<AC. Trên cạnh AC lấy điểm D sao cho AD=AB.Trên tia đối của tia AB lâys diểm E sao cho AE=Ac
a chứng minh tam giác ABC = tam giác ADE và DE=Bc
b chứng minh DEvuông góc với BC
c Biết 4gócB=5gócC.Tính góc AED