Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Duyên
Xem chi tiết
Minh Thư
Xem chi tiết
Dương Lam Hàng
26 tháng 6 2018 lúc 15:23

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình

Triệu Thị Thu Trang
Xem chi tiết
nguyenngocthuytram
4 tháng 3 2020 lúc 16:55

b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)

<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

<=> x2+2x-x+2=2

<=> x2+x=2-2

<=> x2+x=0

<=>x(x+1)=0

<=>x=0 hoặc x+1=0

<=>x=0 hoặc x = -1

Khách vãng lai đã xóa
nguyenngocthuytram
4 tháng 3 2020 lúc 16:47

a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

<=>\(\frac{1.x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

<=> x-3 =10x-15

<=> x-10x= -15+3

<=> -9x = -12

<=> x = \(\frac{-12}{-9}\)

<=> x = \(\frac{4}{3}\)

Khách vãng lai đã xóa
binh2k5
Xem chi tiết
❤  Hoa ❤
25 tháng 2 2019 lúc 20:46

\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)  ĐKXĐ : \(x\ne0;x\ne\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

\(\Leftrightarrow x-3=10x-15\)

\(\Leftrightarrow x-10x=3-15\)

\(\Leftrightarrow-9x=-12\)

\(\Leftrightarrow x=\frac{-12}{-9}=\frac{4}{3}\)(TMĐKXĐ)

KL :....

❤  Hoa ❤
25 tháng 2 2019 lúc 20:51

\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)   ĐKXĐ : \(x\ne0;2\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-x+2=2\)

\(\Leftrightarrow x^2+x=2-2\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

KL ::

❤  Hoa ❤
25 tháng 2 2019 lúc 20:56

\(c,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)    ĐKXĐ : \(x\ne\pm2\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x+x+2+x^2-2x-x+2=2x^2+4\)

\(\Leftrightarrow0x=0\)

KL : PT vô số nghiệm 

Đã Ẩn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2021 lúc 22:31

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

Luray Cat_Moon
Xem chi tiết
Kiệt Nguyễn
4 tháng 3 2020 lúc 14:54

\(3x^2+7x-20=0\)

Ta có \(\Delta=7^2+4.3.20=289,\sqrt{\Delta}=17\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+17}{6}=\frac{5}{3}\\x=\frac{-7-17}{6}=-4\end{cases}}\)

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
4 tháng 3 2020 lúc 15:04

a) \(2x-\frac{3x-1}{3}=2+\frac{x-3}{4}\)

<=> 24x - 4(3x - 1) = 24 + 3(x - 3)

<=> 24x - 12x - 4 = 24 + 3x - 9

<=> 12x + 4 = 24 + 3x - 9

<=> 12x + 4 = 3x + 15

<=> 12x = 3x + 15 - 4

<=> 12x = 3x + 11

<=> 12x - 3x = 11

<=> 9x = 11

<=> x = 11/9

Vậy: tập nghiệm phương trình: S = {11/9}

b) \(\frac{x-5}{2}+\frac{1}{4}=\frac{x-2}{3}-x\)

<=> 3(x - 5) + 3/2 = 2(x - 2) - 6x

<=> 3x - 15 + 3/2 = 2x - 4 - 6x

<=> 3x - 27/2 = -4x - 4

<=> 3x = -4x - 4 + 27/2

<=> 3x = -4x + 19/2

<=> 3x + 4x = 19/2

<=> 7x = 19/2

<=> x = 19/14

Vậy: tập nghiệm phương trình: S = {19/14}

c) \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x+2}{8}-5\)

<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{8}-5\)

<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2x+1}{4}-5\)

<=> 2(5x - 3) - 3(7x - 1) = 3(2x + 1) - 60

<=> 10x - 6 - 21x + 3 = 6x + 3 - 60

<=> -11x - 3 = 6x - 57

<=> -3 = 6x - 57 + 11x

<=> -3 = 17x - 57

<=> -3 + 57 = 17x

<=> 54 = 17x

<=> x = 54/17

Vậy: tập nghiệm phương trình: S = {59/17}

d) 3x+ 7x - 20 = 0

<=> 3x2 + 12x - 5x - 20 = 0

<=> 3x(x + 4) - 5(x + 4) = 0

<=> (x + 4)(3x - 5) = 0

<=> x + 4 = 0 hoặc 3x - 5 = 0

<=> x = -4 hoặc x = 5/3

Vậy: tập nghiệm phương trình: S = {-4; 5/3}

e) x- 3x + 2 = 0

<=> (x2 + x - 2)(x - 1) = 0

<=> (x - 1)(x + 2)(x - 1) = 0

<=> x - 1 = 0 hoặc x + 2 = 0

<=> x = 1 hoặc x = -2

Vậy: tập nghiệm phương trình: S = {1; -2}

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
Xem chi tiết
KAl(SO4)2·12H2O
13 tháng 2 2020 lúc 9:40

Giải phương tình nha :v 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
13 tháng 2 2020 lúc 9:51

a) \(\frac{7x}{8}-5\left(x-9\right)=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-\frac{40\left(x-9\right)}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-\frac{40x-360}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{360-33x}{8}=\frac{20x+1,5}{6}\)

\(\Leftrightarrow2160-198x=160x+12\)

\(\Leftrightarrow358x=2148\)

\(\Leftrightarrow x=6\)

Vậy nghiệm của pt x=6

b)  \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

\(\Leftrightarrow\frac{10\left(x-1\right)+4}{12}-\frac{21x-3}{12}=\frac{4x+2}{7}-\frac{35}{7}\)

\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-33}{7}\)

\(\Leftrightarrow-77x-21=48x-396\)

\(\Leftrightarrow125x=375\)

\(\Leftrightarrow3\)

Vậy nghiệm của pt x=3

Khách vãng lai đã xóa
Lê Tài Bảo Châu
13 tháng 2 2020 lúc 10:08

c)\(\frac{3\left(x-3\right)}{4}+\frac{4x-10,5}{10}=\frac{3\left(x+1\right)}{5}+6\)

\(\Leftrightarrow\frac{15\left(x-3\right)}{20}+\frac{8x-21}{20}=\frac{3x+3}{5}+\frac{30}{5}\)

\(\Leftrightarrow\frac{23x-66}{20}=\frac{3x+33}{5}\)

\(\Leftrightarrow115x-330=60x+660\)

\(\Leftrightarrow55x=990\)

\(\Leftrightarrow x=18\)

Vậy nghiệm của pt x=18

d) \(\frac{2\left(3x+1\right)+1}{4}-5=\frac{2\left(3x-1\right)}{5}-\frac{3x+2}{10}\)

\(\Leftrightarrow\frac{6x+3}{4}-\frac{20}{4}=\frac{4\left(3x-1\right)}{10}-\frac{3x+2}{10}\)

\(\Leftrightarrow\frac{6x-17}{4}=\frac{9x-6}{10}\)

\(\Leftrightarrow60x-170=36x-24\)

\(\Leftrightarrow24x=146\)

\(\Leftrightarrow x=\frac{73}{12}\)

Vậy nghiệm của pt \(x=\frac{73}{12}\)

Khách vãng lai đã xóa
Kim Tuyến
Xem chi tiết
Trần Ái Linh
28 tháng 5 2021 lúc 9:46

ĐK: ` x \ne 2/7`

`(2x+3)((3x+8)/(2-7x)+1)=(x-5)((3x+8)/(2-7x)+1)`

`<=> ((3x+8)(2-7x)+1)(2x+3-x+5)=0`

`<=> ((3x+8)/(2-7x)+1)(x+8)=0`

 \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x+8}{2-7x}=-1\\x+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-8\end{matrix}\right.\)

Vậy `S={5/2 ; -8}`.

Nguyễn Hoàng Dương
Xem chi tiết
Nguyễn Thái Thịnh
22 tháng 1 2022 lúc 15:11

\(a,4x-6< 7x-12\)

\(\Leftrightarrow6< 3x\Leftrightarrow x>2\)

\(b,\frac{3x-7}{4}\ge2-\frac{x+5}{3}\)

\(\Leftrightarrow3\left(3x-7\right)\ge24-4\left(x+5\right)\)

\(\Leftrightarrow13x\ge25\Leftrightarrow x\ge\frac{25}{13}\)

\(c,\frac{3x-8}{-7}\ge1-\frac{x+2}{-3}\)

\(\Leftrightarrow-3\left(3x-8\right)\ge21+7\left(x+2\right)\)

\(\Leftrightarrow-16x\ge11\)

\(\Leftrightarrow x\le-\frac{11}{16}\)

\(d,-12-8x>3+2x-\left(5-7x\right)\)

\(\Leftrightarrow14>17x\Leftrightarrow x< \frac{14}{17}\)

\(e,-1+\frac{x-1}{-3}\le\frac{x+2}{-9}\)

\(\Leftrightarrow-9-3\left(x-1\right)\le-\left(x+2\right)\)

\(\Leftrightarrow-2x\le4\Leftrightarrow x\ge-2\)

Khách vãng lai đã xóa