Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 10:28

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

Mai Anh Lê
Xem chi tiết
Hien Pham
Xem chi tiết
Aki Tsuki
24 tháng 2 2018 lúc 23:32

ĐKXĐ:\(x\ne\pm\dfrac{1}{2}\)

\(\dfrac{1+8x}{4+8x}-\dfrac{4x}{12x-6}+\dfrac{32x^2}{3\left(4-16x^2\right)}=0\)

\(\Leftrightarrow\dfrac{1+8x}{4\left(2x+1\right)}-\dfrac{4x}{6\left(2x-1\right)}+\dfrac{32x^2}{-6\cdot\left(2x-1\right)\left(2x+1\right)}=0\)

\(\Leftrightarrow\dfrac{6\cdot\left(1+8x\right)\left(2x-1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{4\cdot4x\left(2x+1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{32x^2\cdot4}{24\left(2x-1\right)\left(2x+1\right)}=0\)

\(\Leftrightarrow96x^2-36x-6-36x^2-16x-144x^2=0\)

\(\Leftrightarrow-84x^2-52x-6=0\)

\(\Leftrightarrow\Delta=688\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{52-\sqrt{688}}{-168}=\dfrac{-13+\sqrt{43}}{42}\\x_2=\dfrac{52+\sqrt{688}}{-168}=\dfrac{-13-\sqrt{43}}{43}\end{matrix}\right.\)

Vậy pt có 2 nghiệm phân biệt............

Chi Hana
Xem chi tiết
dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 14:16

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:04

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:03

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Vũ Lan Anh
Xem chi tiết
Lamtay4037D
19 tháng 9 2023 lúc 16:17

hết cứu đi mà làm

vuule
Xem chi tiết
Lê Quang Thiên
Xem chi tiết
ST
4 tháng 7 2018 lúc 9:23

1/ 

a, (x-3)2+(4+x)(4-x)=10

<=>x2-6x+9+(16-x2)=10

<=>-6x+25=10

<=>-6x=-15

<=>x=5/2

còn lại tương tự a 

2/

a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3

Mà (2,3)=1

=>a(a+1)(a+2) chia hết cho 6 (đpcm)

b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)

c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)

d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)

Lê Ng Hải Anh
5 tháng 7 2018 lúc 9:17

g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)

\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)

\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)

\(\Leftrightarrow8x=2\)

\(\Leftrightarrow x=\frac{1}{4}\)

bn xem lại đi nha