cho a>b chứng minh :
4a-2 > 4b-3
Cho a> b hãy chứng minh:
2 - 4a < 3 - 4b
Lời giải:
Xét hiệu $3-4b-(2-4a)=1+4(a-b)>0$ do $1>0$ và $4(a-b)>0$ khi $a>b$
$\Rightarrow 3-4b> 2-4a$ (đpcm)
Ta có: a>b
nên -4a<-4b
\(\Leftrightarrow-4a+2< -4b+2\)
mà -4b+2<-4b+3
nên -4a+2<-4b+3(đpcm)
cho a>b chứng minh :
4a-2 > 4b-3
a>b
4a>4b ( nhân 2 vế với 4
4a+(-2)>4b+(-2) ( cộng 2 vế với -2)
4a-2>4b-3 ( vì -2 > -3)
=> 4a-2>4b-3
các bạn xem hộ mình giải đúng ko ..........
Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:
Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)
Cho a>b . Chứng minh 2a-3 và 2b-3
cho -4a+1 < -4b+1 . So sánh a và b.
c)Biết 3-4a < 5c +2 và 5c-1<-4b. So sánh a và b
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
Cho a>b. Hãy chứng minh: 2-4a < 3-4b
cho a>b chứng minh :
4a-2 > 4b-3
-5a+1 < -5b+2
Bài 5. Cho tỉ lệ thưc \(\dfrac{a}{b}=\dfrac{c}{d}\). Hãy chứng minh:
\(\dfrac{4a+3c}{4b+3d}\) = \(\dfrac{4a-3c}{4b-3d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{4a+3c}{4b+3d}=\dfrac{4bk+3dk}{4b+3d}=k\)
\(\dfrac{4a-3c}{4b-3d}=\dfrac{4bk-3dk}{4b-3d}=k\)
Do đó: \(\dfrac{4a+3c}{4b+3d}=\dfrac{4a-3c}{4b-3d}\)
Cho a, b > 0. Chứng minh \(\frac{a^2+b^2}{\left(4a+4b\right)\left(3a+4b\right)}\ge\frac{1}{25}\)
Thay \(a=b=1\Rightarrow\frac{2}{8.7}\ge\frac{1}{25}\Leftrightarrow\frac{2}{56}\ge\frac{1}{25}\) (sai)
Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
Cho a > b, chứng tỏ: 2 – 4a < 3 – 4b
Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)
Mặt khác: 2 – 4a < 3 – 4a (2)
Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b