giải phương trình 1/x-1+2/x-2+3/x-3=6/x+6
aGiải phương trình |x-1|+|x-2|=|2x-3|
b)Giải phương trình 1/(x−2 )+ 2/(x−3) − 3/(x−5) = 1/(x^2 −5x+6)
giải phương trình 1/x-1+2/x-2+3/x-3=6/x-6
Bạn kiểm tra lại đề nhé
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a)Giải phương trình:
(x^2+x)^2-(x^2+x)-2=0
b)Giải phương trình:
x+3/x-4 +3=6/1-x
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
giải phương trình 1/x-1+2/x-2+3/x-3=6/x+6
Giải hộ mình phương trình này với 1/x-1+2/x-2+3/x-3=6/x-6
\(\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}\)
ĐKXĐ : x ≠ 1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 6
pt <=> \(\frac{x^2-5x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{3x^2-9x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)
<=> \(\frac{6x^2-22x+18}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)
=> \(\left(x-6\right)\left(6x^2-22x+18\right)=6\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
(bạn tự khai triển rút gọn nhé)
<=> \(6x^3-58x^2+150x-108=6x^3-36x^2+66x-36\)
<=>\(6x^3-58x^2+150x-108-6x^3+36x^2-66x+36=0\)
<=> \(-22x^2+84x-72=0\)
<=> \(11x^2-42x+36=0\)
(pt này lên lớp 9 mới học nên mình dừng tại đây)
`1)` Giải các pt `a)(x+2)/(x-3)+x/(x+2)=(x^{2}+6)/(x^{2}-x-6)` `b)(x+1)^{2}+|x-1|=x^{2}+4` `2)` Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số `1-(x-1)/3<(x+3)/3-(x-2)/2`
1.\(\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{x^2-x-6}\)
\(\Leftrightarrow\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)
\(ĐK:x\ne3;-2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x+2\right)+x\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow\left(x+2\right)\left(x+2\right)+x\left(x-3\right)=x^2+6\)
\(\Leftrightarrow x^2+4x+4+x^2-3x-x^2-6=0\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)
b.\(\left(x+1\right)^2+\left|x-1\right|=x^2+4\)
\(\Leftrightarrow\) \(\left(x+1\right)^2+x-1=x^2+4\) hoặc \(\left(x+1\right)^2+1-x=x^2+4\)
Xét \(\left(x+1\right)^2+x-1=x^2+4\)
\(\Leftrightarrow x^2+2x+1+x-1-x^2-4=0\)
\(\Leftrightarrow3x-4=0\)
\(\Leftrightarrow x=\dfrac{4}{3}\)
Xét \(\left(x+1\right)^2+1-x=x^2+4\)
\(\Leftrightarrow x^2+2x+1+1-x-x^2-4=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{\dfrac{4}{3};2\right\}\)
2.\(1-\dfrac{x-1}{3}< \dfrac{x+3}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6-2\left(x-1\right)}{6}< \dfrac{2\left(x+3\right)-3\left(x-2\right)}{6}\)
\(\Leftrightarrow6-2\left(x-1\right)< 2\left(x+3\right)-3\left(x-2\right)\)
\(\Leftrightarrow6-2x+2< 2x+6-3x+6\)
\(\Leftrightarrow-x< 4\)
\(\Leftrightarrow x>4\)
Vậy \(S=\left\{x|x>4\right\}\)
giải phương trình sau:
(x+1)^3-(x-1)^3=6(x^2+x+1)
\(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\\ \Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\\ \Leftrightarrow6x^2+2-6x^2-6x-6=0\\ \Leftrightarrow-6x-4=0\\ \Leftrightarrow x=-\dfrac{2}{3}\)
giải phương trình
2 x^3+9 x^2-6 x (1+2 sqrt(6 x-1))+2 sqrt(6 x-1)+8 = 0