Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Yến
Bài 12 : Cho điểm A ở ngoài đường tròn (O;R) , OA 2R. Vẽ AB, AC là các tiếp tuyến của đường tròn O) (B, C là tiếp điểm ) . Tính góc BOC. Bài 13 Cho tam giác ABC đều . Vẽ đường tròn (O) đường kính BC cắt cạnh AB, AC lần lượt tại D, E. a) Tính số đo mỗi cung BD. b) Chứng tỏ cung BD cung DE cung EC. Bài 14 Hai tiếp tuyến của đường tròn (O) tại A và B cắt nhau tại P. Biết góc APB 42 0 a) Tính số đo mỗi cung AB. b) Kẻ bán kính OM của (O) sao cho OM//PB và M thuộc cung nhỏ AB. Tính số đo cung AM. Bà...
Đọc tiếp

Những câu hỏi liên quan
ĐỖ MẠNH TÀI
Xem chi tiết
Liên Nguyễn Bình Phương
Xem chi tiết
Đỗ Tuệ Lâm
23 tháng 2 2022 lúc 22:44

giải b1 , hình ảnh tham khảo:

undefined

Đỗ Tuệ Lâm
23 tháng 2 2022 lúc 22:46

giải b2:

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c,\(\widehat{PMH}=\widehat{MBH}\Rightarrow\widehat{PQH}=\widehat{O_2QP}\)  => PQ là tiếp tuyến của \(\left(O_2\right)\) 

Tương tự PQ cũng là tiếp tuyến \(\left(O_1\right)\)

Đỗ Vũ Thảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 18:29

a:

Sửa đề: \(AD\cdot AC=AB^2=AO^2-R^2\)

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CA tại D

Xét ΔBCA vuông tại B có BD là đường cao

nên \(AD\cdot AC=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có \(OB^2+BA^2=OA^2\)

=>\(BA^2+R^2=OA^2\)

=>\(BA^2=OA^2-R^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AC=AB^2=OA^2-R^2\)

b: ΔOBE cân tại O

mà OH là đường cao

nên H là trung điểm của BE

Xét ΔBCE có

O,H lần lượt là trung điểm của BC,BE

=>OH là đường trung bình của ΔBCE

=>OH//CE và OH=1/2CE

OH//CE

F\(\in\)OH

Do đó: HF//CE

\(OH=\dfrac{1}{2}CE\)

\(OH=\dfrac{1}{2}FH\)

Do đó: CE=FH

Xét tứ giác CEHF có

CE//HF

CE=HF

Do đó: CEHF là hình bình hành

Hình bình hành CEHF có \(\widehat{FHE}=90^0\)

nên CEHF là hình chữ nhật

ΔOBE cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOE

Xét ΔOBA và ΔOEA có

OB=OE

\(\widehat{BOA}=\widehat{EOA}\)

OA chung

Do đó: ΔOBA=ΔOEA

=>\(\widehat{OBA}=\widehat{OEA}=90^0\)

=>AE là tiếp tuyến của (O)

c: Xét (O) có

ΔBGC nội tiếp

BC là đường kính

Do đó: ΔBGC vuông tại G

=>GB\(\perp\)GC tại G

Xét ΔHEC vuông tại E và ΔHGB vuông tại G có

\(\widehat{EHC}=\widehat{GHB}\)

Do đó: ΔHEC đồng dạng với ΔHGB

=>\(\dfrac{HE}{HG}=\dfrac{HC}{HB}\)

=>\(HE\cdot HB=HG\cdot HC\)

=>\(HG\cdot HC=HB^2\left(3\right)\)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(HO\cdot HA=HB^2\left(4\right)\)

Từ (3) và (4) suy ra \(HG\cdot HC=HO\cdot HA\)

 

Phạm Quỳnh Anh
Xem chi tiết
Yuri Nguyễn
Xem chi tiết
NgP_Thao
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 21:47

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD(=R)

nên \(OH\cdot OA=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

Xét ΔOHD và ΔODA có

\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODA

Phan Thị Hà Vy
Xem chi tiết
Nguyễn Tũn
14 tháng 8 2018 lúc 13:21

dễ ẹc!!!!!!!!

Hn . never die !
1 tháng 5 2020 lúc 21:16

Trả lời :

Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.

- Hok tốt !

^_^

Khách vãng lai đã xóa
❤️ HUMANS PLAY MODE ❤️
1 tháng 5 2020 lúc 21:19

dễ ẹc thì lm cho mk coi đi

mk ko bt lm

Khách vãng lai đã xóa
Lê Nguyễn Hà Vy
Xem chi tiết
Anh Thư Trịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 10:50

a: góc OAS+góc OBS=180 độ

=>OASB nội tiếp

b: Xét ΔMAC và ΔMBA có

góc MAC=góc MBA

góc AMC chung

=>ΔMAC đồng dạng với ΔMBA

=>MA/MB=MC/MA

=>MA^2=MB*MC

RealBoyMC
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 23:13

Xét tứ giác AOBS có

\(\widehat{SAO}+\widehat{SBO}=180^0\)

Do đó: AOBS là tứ giác nội tiếp