Cho tam giác ABC. Hãy chứng minh các bất đẳng thức:
1. BA + BC > AC
2. CA + CB > AB
Cho tam giác ABC vuông tại đường cao CH. Trên các cạnh AB và AC lấy tương ứng hai điểm M và N sao cho BM = BC, CN = CH. Chứng minh: al MN vuông góc CA b/ AC + BC < AB + CH Chuẩn bị bài "Quan hệ giữa ba cạnh của tam giác. Bất đẳng thức tam giác"
Bất đẳng thức tam giác
AB+AC>BC
Với tam giác Abc có :AB+BC/.CA :AB+AC>BC;AC+BC>AC
từ bất đẳng thức tam giác ,ta cũng có :AB>CA-CB; AC>BC-BA ;BC>AC-AB
AB+AC>BC
=>AB+AC-BC>0
=>AC-BC>-AB
=>BC-AC<AB
hay AB>CB-CA>CA-CB
AC>BC-BA
=>AC-BC+BA>0
=>AC+BC>BC(luôn đúng)
BC>AC-AB
=>BC-AC+AB>0
=>BC+AB>AC(luôn đúng)
CHO ĐIỂM O nằm trong tam giác đều ABC . Trên các cạnh AB, BC,CA lấy các điểm D,E,F sao cho OD//BC; OE//CA; OF//AB. Chứng minh rằng;
a) góc DOE =EOF=FOD
b) Ba đoạn thẳng OA ,OB,OC thỏa mãn bất đẳng thức tam giác
CHO ĐIỂM O nằm trong tam giác đều ABC . Trên các cạnh AB, BC,CA lấy các điểm D,E,F sao cho OD//BC; OE//CA; OF//AB. Chứng minh rằng;
a) góc DOE =EOF=FOD
b) Ba đoạn thẳng OA ,OB,OC thỏa mãn bất đẳng thức tam giác
Vì ∆ABC đều
=> A = B = C
Vì OD // BC ( gt)
=> ODEB là hình thang
Vì OE//AC(gt)
=> C = DEB ( đồng vị)
Mà B = C
=> B = DEB
=> DOEB là hình thang cân
Vì OE // AC
=> EOFC là hình thang
Vì OF//AB
=> A = BFC ( đồng vị)
Mà A = C (cmt)
=> C = BFC
=> EOFC là hình thang cân
Vì OF // AB
=> FODA là hình thang
Mà OD //BC
=> ADF = B
Mà A = B
=> A = ADF
=> FODA là hình thang cân
Vì DOEB là hình thang cân
Mà B = OEB = 60°
=> BDO = DOE = 120°
Chứng minh tương tự ta có
DOE = DOF = FOD = 120°
Trong hình thang cân hai đường chéo bằng nhai
=> OA = DF
=> OB = DE
=> OC = EF
Vì 3 đoạn thẳng OA ; OB ; OC lần lượt là bằng 3 cạnh của ∆DEF
=> 3 đoạn thẳng OA ; OB ; OC thỏa mãn bất đẳng thức tam giác
CHO ĐIỂM O nằm trong tam giác đều ABC . Trên các cạnh AB, BC,CA lấy các điểm D,E,F sao cho OD//BC; OE//CA; OF//AB. Chứng minh rằng;
a) góc DOE =EOF=FOD
b) Ba đoạn thẳng OA ,OB,OC thỏa mãn bất đẳng thức tam giác
Cho điểm O nằm trong tam giác đều ABC. Trên các cạnh AB,CB,CA lấy lần lượt các điểm D,E,F sao chi OD song song BC, OE song song CA, OF song song AB. Chứng minh ba đoạn OA, OB, OC thoả mãn bất đẳng thức tam giác
Bất đẳng thức tam giác ý là : Tổng 2 cạnh bất kỳ lớn hơn cạnh còn lại
Hiệu 2 cạnh bất kỳ bé hơn cạnh còn lại
Các bạn trình bày lời giải giúp mình nhé. Xin Cảm Ơn
Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC.
Chứng minh bất đẳng thức MA + MB < CA + CB.
Theo kết quả câu a và câu b
MA + MB < IB + IA < CA + CB nên MA + MB < CA + CB.
Một cách chứng minh khác của bất đẳng thức:
Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. Kẻ đường thẳng vuông góc AH đến đường thẳng BC.
a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông để chứng minh AB+ AC> BC.
b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại.
a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C
=> HB + HC = BC
∆AHC vuông tại H => HC < AC
∆AHB vuông tại H => HB < AB
Cộng theo vế hai bất đẳng thức ta có:
HB + HC < AC + AB
Hay BC < AC + AB
b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC
Do đó AB < BC + AC; AC < BC +AB
(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)
Một cách chứng minh khác của bất đẳng thức tam giác:
Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. kẻ đường vuông góc AH đến đường thẳng BC (H ε BC)
a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông để chứng minh AB + AC > BC
b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại
a) Xét tam giác vuông AHC có AC là cạnh lớn nhất ( cạnh lớn nhất trong tam giác vuông) => AC>HC (1) Xét tam giác vuông AHB có AB là cạnh lớn nhất (canh lớn nhất trong tam giác vuông) =>AB>HB (2) Ta có : HC+HB+BC ( H nằm giũa A và C) (3) Từ (1) , (2) và (3) => AC+AB>BC b)Xét tam giác ABC có BC là cạnh lớn nhất(gt) =>BC>AB Ta có : AC>0 => BC+AC>AB Xét tam giác ABC có BC là cạnh lớn nhất (gt) =>BC>AC Vì AB>0=>BC+AB>AC