cho tam giác nhọn ABC .Trên nửa mặt phẳng bờ AB ko chứa C lấy D sao cho AD vông góc AB , AD = AB trên nủa mặt phảng bờ chứa tia AC ko chứa B lấy E sao cho AE vuông góc AC ,AE = AC gọi M là trung điểm DE .
CM BC = 2AM
CM AM vuông góc BC
:Cho tam giác ABC nhọn. Trên nửa mặt phẳng bờ AC ko chứa B, vẽ tia Ax vuông góc với AC. Trên nửa mặt phẳng bờ AB ko chứa C, vẽ tia Ay vuông góc với AB.Trên tia Ax lấy điểm D sao cho AD=AC. Trên tia Ay lấy điểm E sao cho AE=AB.Kẻ AH cắt BC tại H. Tia đối của AH cắt ED tại M ME=MD
Cho tam giác nhọn ABC. Trên nửa mặt phẳng bờ AB ko chứa C,lấy D sao choAD=AB và AD vuông góc với AB. Trên nửa mặt phẳng bờ AC ko chứa B lấy E sao cho AE=AC và AE vuông góc với AC. Kẻ AH vuông góc với BC tại H. AH cắt DE tại K. Chứng minh K là trung điểm của DE
Cho tam giác ABC nhọn. Trên nửa mặt phẳng bờ AB, không chứa điểm C, lấy điểm D sao cho AD vuông góc AB; AD=AB. Trên nửa mặt phẳng bờ AC, không chứa điểm B, lấy điẻm E sao cho AE vuông góc AC; AE=AC. Kẻ AH vuông góc BC, tia HA cắt DE tại K. Chứng minh rằng K là trung điểm của DE.
Dùng hình của bạn Mai nhé.
Kẽ DP và EQ \(⊥\)HK tại P và Q.
Xét \(\Delta DPA\)và \(\Delta AHB\)có
\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)
\(\Rightarrow\Delta DPA=\Delta AHB\)
\(\Rightarrow DP=AH\left(1\right)\)
Xét \(\Delta EQA\)và \(\Delta AHC\)có
\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)
\(\Rightarrow\Delta EQA=\Delta AHC\)
\(\Rightarrow EQ=AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DP=EQ\)
Xét \(\Delta DPK\)và \(\Delta EQK\)có
\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)
\(\Rightarrow\Delta DPK=\Delta EQK\)
\(\Rightarrow DK=EK\)
Vậy K là trung điểm của DE
Hình xấu quá anh thông cảm. Anh đọc lại đề để tránh bị lộn kí hiệu góc vuông nha anh :)
cho tam giác ABC, M là trung điểm của BC, trên nửa mặt phẳng ko chứa C có bờ AB. Vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng ko chứa B ở bời AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE= AC. Chứng minh:
a, AM=DE/2
b,AM vuông góc với DE.
cho tam giác ABC có góc A < 90 độ . trên nửa mặt phẳng bờ AB ko chứa điểm C ; vẽ tia Ax vuông góc với AB . trên tia Ax lấy điểm D sao cho AD = AB . trên nửa mặt phẳng bờ AB ko chứa điểm B vẽ tia Ay vuông AC , trên đó lấy điểm E sao cho AE = AC .
a,chứng minh : BE = CD
b, BE vông góc với CD
c,AC và ED có thể vuông góc với nhau được ko ? vì sao ?
cho tam giác abc nhọn trên nữa mặt phẳng bờ ab ko chứa điểm c vẽ tia ax vuông góc vs ab trên tia ax lấy d sao cho ad=ab trên mặt phẳng bờ ac ko chứa điểm b vẽ tia ay vuông góc với ac trên ay lấy e sao cho ae=ac CMR dc=be và dc vuông góc với be
mk đang cần gấp ạ chiều nay kt rồi giúp mk nha
Cho tam giác ABC nhọn. Trên nửa mặt phẳng bờ AB, không chứa điểm C, lấy điểm D sao cho AD vuông góc AB; AD=AB. Trên nửa mặt phẳng bờ AC, không chứa điểm B, lấy điẻm E sao cho AE vuông góc AC; AE=AC. Kẻ AH vuông góc BC, tia HA cắt DE tại K. Chứng minh rằng K là trung điểm của DE
Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Cho tam giác ABC có góc A nhọn. Trên nửa mặt phẳng bờ AB chứa C, vẽ tia Ax vuông góc AB;trên nửa mặt phẳng bờ AC chứa B, vẽ tia Ấy vuông góc AC. Lấy điểm D thuộc tia Ax sao cho AD=AB, điểm E thuộc tia Ấy sao cho AE=AC. Gọi M là Trung điểm BC. Chứng minh: AM vuông góc với DE, AM=1/2DE
cho tam giác ABC nhọn . Trên nửa mặt phẳng bờ AB không chứa C lấy D sao cho AD vuông góc AB và AD=AB . trên nửa mặt phẳng bờ AC không chứa B lấy E sao cho AE vuông góc AC và AE=AC
Chứng minh rằng : a, BE=CD
b,BE vuông góc CD
a: Ta có: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=\widehat{BAC}+90^0\)
\(\widehat{CAD}=\widehat{CAB}+\widehat{DAB}=\widehat{BAC}+90^0\)
Do đó: \(\widehat{BAE}=\widehat{CAD}\)
Xét ΔBAE và ΔDAC có
AB=AD
\(\widehat{BAE}=\widehat{DAC}\)
AE=AC
DO đó: ΔBAE=ΔDAC
=>BE=DC
b: Gọi giao điểm của BE và CD là H
Ta có: ΔBAE=ΔDAC
=>\(\widehat{ABE}=\widehat{ADC};\widehat{AEB}=\widehat{ACD}\)
Xét tứ giác AHBD có \(\widehat{ADH}=\widehat{ABH}\)
nên AHBD là tứ giác nội tiếp
=>\(\widehat{DHA}=\widehat{DBA}=45^0\)
Xét tứ giác AHCE có \(\widehat{AEH}=\widehat{ACH}\)
nên AHCE là tứ giác nội tiếp
=>\(\widehat{AHE}=\widehat{ACE}=45^0\)
\(\widehat{DHE}=\widehat{DHA}+\widehat{EHA}=45^0+45^0=90^0\)
=>EB\(\perp\)CD tại H