Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Son Nguyen
Xem chi tiết
Phạm Hoàng Yến
Xem chi tiết
Minh Son Nguyen
Xem chi tiết
Akai Haruma
28 tháng 3 2020 lúc 23:40

Lời giải:

Thay $y=a-x$ vào biểu thức $P$. Vì $x+y=a; x,y\geq 0$ nên $a\geq 0; 0\leq x,y\leq a$

Ta có:$P=40x+x(a-x)=-x^2+(40+a)x$

Nếu $a\geq 40$:

$P=-[x^2-(40+a)x]=(\frac{40+a}{2})^2-[x^2-2.x.\frac{40+a}{2}+(\frac{40+a}{2})^2]=(\frac{40+a}{2})^2-(x-\frac{40+a}{2})^2$

Dễ thấy $(x-\frac{40+a}{2})^2\geq 0$ với mọi $a\leq x\geq 0$

Do đó: $P\leq \left(\frac{40+a}{2})^2$ hay $P_{\max}=\left(\frac{40+a}{2}\right)^2$

Giá trị này đạt đc khi $x=\frac{40+a}{2}, b=\frac{a-40}{2}$

Nếu $a< 40$:

$P=-x^2+(40+a)x=40x-ax+a^2-(x-a)^2$=x(40-a)+a^2-(x-a)^2$

Vì $a< 40; x\leq a\Rightarrow x(40-a)\leq a(40-a)$

$(x-a)^2\geq 0$ với mọi $0\leq x\leq a$. Do đó: $P\leq a(40-a)+a^2=40a$

Vậy $P_{\max}=40a$ khi $x=a; y=0$

Khách vãng lai đã xóa
Akai Haruma
23 tháng 3 2020 lúc 7:00

Lời giải:

Thay $y=a-x$ vào biểu thức $P$. Vì $x+y=a; x,y\geq 0$ nên $a\geq 0; 0\leq x,y\leq a$

Ta có:$P=40x+x(a-x)=-x^2+(40+a)x$

Nếu $a\geq 40$:

$P=-[x^2-(40+a)x]=(\frac{40+a}{2})^2-[x^2-2.x.\frac{40+a}{2}+(\frac{40+a}{2})^2]=(\frac{40+a}{2})^2-(x-\frac{40+a}{2})^2$

Dễ thấy $(x-\frac{40+a}{2})^2\geq 0$ với mọi $0\leq x\leq a$

Do đó: $P\leq \left(\frac{40+a}{2}\right)^2$ hay $P_{\max}=\left(\frac{40+a}{2}\right)^2$

Giá trị này đạt đc khi $x=\frac{40+a}{2}, b=\frac{a-40}{2}$

Nếu $a< 40$:

$P=-x^2+(40+a)x=40x-ax+a^2-(x-a)^2a=x(40-a)+a^2-(x-a)^2$

Vì $a< 40; x\leq a\Rightarrow x(40-a)\leq a(40-a)$

$(x-a)^2\geq 0$ với mọi $0\leq x\leq a$. Do đó: $P\leq a(40-a)+a^2=40a$

Vậy $P_{\max}=40a$ khi $x=a; y=0$

Khách vãng lai đã xóa
phan gia huy
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
hung
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 8 2019 lúc 8:10

Đáp án là B

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 8 2021 lúc 19:10

\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)

\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)

\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)

Đặt \(xy=a\Rightarrow0\le a\le4\)

\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)

\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)

\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)

\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)

Trương Krystal
Xem chi tiết
Đinh Đức Hùng
3 tháng 5 2018 lúc 17:48

Ta có :

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)

\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)

TK Trung Kiên
5 tháng 6 2018 lúc 11:08

Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??