Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhuân Nguyễn
Xem chi tiết
Thanh Hoàng Thanh
30 tháng 1 2022 lúc 11:09

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

Truong My Hoa
Xem chi tiết
Anh Bao
Xem chi tiết
Buddy
3 tháng 3 2021 lúc 20:41

Violympic toán 7

trì ngâm
Xem chi tiết
Hoi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 20:33

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN(gt)

\(\widehat{HMB}=\widehat{KNC}\)(hai góc ở đáy trong ΔAMN cân tại A)

Do đó: ΔHBM=ΔKCN(cạnh huyền-góc nhọn)

Suy ra: BH=CK(hai cạnh tương ứng)

c) Ta có: ΔHBM=ΔKCN(cmt)

nên HM=KN(hai cạnh tương ứng)

Ta có: AH+HM=AM(H nằm giữa A và M)

AK+KN=AN(K nằm giữa A và N)

mà AM=AN(cmt)

và HM=KN(cmt)

nên AH=AK(đpcm)

d) Ta có: ΔHBM=ΔKCN(cmt)

nên \(\widehat{HBM}=\widehat{KCN}\)(hai góc tương ứng)

mà \(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)

và \(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Nguyễn Hằng
Xem chi tiết
Thanh Quân
28 tháng 1 2022 lúc 13:08

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

Nguyễn Huy Tú
28 tháng 1 2022 lúc 13:11

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

☆Châuuu~~~(๑╹ω╹๑ )☆
28 tháng 1 2022 lúc 13:18

\(Ta.có:\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\ Mà.\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}\\ \Rightarrow\widehat{ABM}=\widehat{ACN}\\ Xét.\Delta ABM.và.\Delta ACN.có:\\ MB=MC\\ \widehat{ABM}=\widehat{ACN}\left(chứng.minh.trên\right)\\ AB=AC\left(\Delta ABC.cân\right)\\ Vậy.\Delta ABM=\Delta ACN\left(c.g.c\right)\\ \Rightarrow AM=AN\left(2.cạnh.tương.ứng\right)\\ \widehat{M}=\widehat{N}\left(2.góc.t.ứng\right)\)   

\(b,Xét.\Delta MBH.và.\Delta NCK.có:\\ \widehat{BHM}=\widehat{CKN}=90^0\\ MB=MC\\ \widehat{M}=\widehat{N}\left(cmt\right)\\ Vậy.\Delta MBH=\Delta NCK\left(cạnh.huyền,góc.nhọn\right)\\ \Rightarrow\widehat{HBM}=\widehat{KCN}\left(2.góc.t.ứng\right)\\ \Rightarrow MH=KN\left(2.cạnh.t.ứng\right)\\ Mà.AM=AH+HM;AN=AK+KN\\ \Rightarrow AH=AK\)  

\(c,Ta.có:\widehat{HBM}=\widehat{KCN}\left(chứng.minh.trên\left(cmt\right)\right)\\ Mà.\widehat{HBM}=\widehat{CBO}\left(2.góc.đối.đỉnh\right)\\ \widehat{KCN}=\widehat{BCO}\left(2.góc.đối.đỉnh\right)\\ \Rightarrow\widehat{CBO}=\widehat{BCO}\\ \Rightarrow\Delta OBC.là.\Delta cân\)

Hoàng Trang
Xem chi tiết
Nguyễn Phương Linh
6 tháng 1 2018 lúc 15:57

Bạn tự vẽ hình nha

a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB

<=> góc ABM = góc ACN (vì các góc kề bù với nhau)

Xét tam giác ABM và tam giác ACN

Có: AB = AC (CMT)

      góc ABM = góc ACN (CMT)

      BM = CN (gt)

<=> tam giác ABM = tam giác ACN (c.g.c)

<=> AM = AN ( 2 góc tương ứng)

<=> tam giác AMN cân tại A

Nguyễn Phương Linh
6 tháng 1 2018 lúc 16:00

b. Vì tam giác ABM = tam giác ACN (CMT)

<=> góc MAB = góc CAN ( 2 góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông AKC

Có: AB= AC (CMT)

      góc AHB= góc AKC= 90 độ

     góc MAB = góc CAN (CMT)

<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)

Đỗ Quỳnh Chi
Xem chi tiết
hải lê
Xem chi tiết
muôn năm Fa
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
8 tháng 2 2020 lúc 19:47

suy nghĩ hơi lâu à nha ~~~ đợi chút

Khách vãng lai đã xóa
🌱🌿_Biin_🌿🌱
8 tháng 2 2020 lúc 19:51

https://olm.vn/hoi-dap/detail/8238415826.html Link câu trl

Khách vãng lai đã xóa
Team Free Fire 💔 Tớ Đan...
8 tháng 2 2020 lúc 19:52

 tự kẻ hình :

a, tam giác ABC cân tại A (gt)

=> AB = AC (đn)         (1)

     góc ABC = góc ACB (đl)

góc ABC + góc ABM = 180 (kb)

góc ACB + góc ACN = 180 (kb)

=> góc ABM = góc ACN          (2)

xét tam giác ABM  và tam giác ACN có : BM = CN (gt) và (1); (2)

=> tam giác ABM = tam giác ACN (c-g-c)

=> MA = NA (đn)

=> tam giác AMN cân tại A (đn)

b, xét tam giác HBM và tam giác KCN có : MB = CN (gt

góc M = góc N do tam giác AMN cân (câu a) 

góc MHB = góc NKC = 90 do ... 

=> tam giác HBM = tam giác KCN (ch - gn)

=> HB = CK (đn)

c, có AM = AN (Câu a)

AM = AH + HM

AN = AK + KN  

HM = KN do tam giác HBM = tam giác KCN (câu b)

=> HM = KN 

Khách vãng lai đã xóa