Tìm x, biết : \(\frac{x+11}{2000}+\frac{x+5}{2016}+\frac{x+1}{1006}=4\)
Tìm x biết : \(\frac{x-1}{2000}+\frac{x+5}{2016}+\frac{x+1}{1006}=4\)
Ta có:
(x-1)/2000+(x+5)/2016+(x+1)/1006=4
=>(x-2001)/2000+(x-2001)/2016+(x-2001)/1006=0 (Cộng 1 vào 2 phân số đầu, cộng 2 vào phân số cuối)
=>(x-2001)*(1/2000+1/2016+1/1006)=0
=>x-2001=0 (Do 1/2000+1/2016+1/1006 khác 0)
=>x=2001
Vậy x=2001
\(\Leftrightarrow\left(\frac{x-1}{2010}-1\right)+\left(\frac{x+5}{2016}-1\right)+\left(\frac{x+1}{1006}+2-4\right)=0\)( mk nghĩ đề sai đó bạn! Đổi 2000 thành 2010)
\(\Leftrightarrow\frac{x-2011}{2010}+\frac{x-2011}{2016}+\frac{x-2011}{1006}=0\)
\(\Leftrightarrow\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2016}+\frac{1}{1006}\right)=0\Rightarrow x-2011=0\Leftrightarrow x=2011\)
Bạn có thể cho mình biết bài này bạn lấy ở đâu không? Để mk biết đề sai hay đúng nhé. Do mk thấy phần đề không hợp lí lắm
~ Chúc bạn học tốt~
Lê Quang Quân ơi! Hình như bạn làm sai rồi
\(\frac{x-1}{2010}+\frac{x+5}{2016}+\frac{x+1}{1006}=4\)
<->(x-1)/2010 + (x+5)/2016 + (x+1)/1006 - 4=0
<-> (x-1)/2010 -1 + (x+5)/2016 -1 + (x+1)/1006 -2=0
<-> (x-2011)/2010 + (x-2011)/2016 + (x-2011)/1006 = 0
<-> (x-2011)*(1/2010 + 1/2016 + 1/1006) = 0
Mà 1/2010+1/2016+1/1006 khác 0
=> x-2011=0 <-> x=2011
x =2001 vì nếu nhìn kĩ hơn thì sẽ có phép tính là 1+1+2=4 và số nào -1 bằng 2010 ^_^ cộng 5 bằng 2016 và cộng 1 gấp 2 1006
Tìm x biết:
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
2) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
<=> \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> \(x+1=0\) (do 1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)
<=> \(x=-1\)
Vậy...
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
<=> \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> \(x+2010=0\) (do 1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)
<=> \(x=-2010\)
Vậy....
3. Tìm x biết :
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
2. Tìm x nguyên biết :
\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1006}-1}{4}\)
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
Tìm x biết :
a) \(-\frac{2}{3}.x+4=-12\)
b) \(-\frac{3}{4}+\frac{1}{4}:x=-3\)
c) \(\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
d)\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
d) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}-\frac{x+10}{2000}-\frac{x+11}{1999}-\frac{x+12}{1998}=0\)
<=> \(\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+10}{2000}+1\right)-\left(\frac{x+11}{1999}+1\right)-\left(\frac{x+12}{1998}+1=0\right)\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
<=>\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> x+2010 = 0 vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)
<=> x = -2010
Tìm x biết :
\(\frac{x-1}{2020}+\frac{x-3}{2018}+\frac{x-5}{2016}+\frac{x-7}{2014}=4\)
helpppppppppppppppp
Bài làm:
Pt <=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-5}{2016}-1\right)+\left(\frac{x-7}{2014}-1\right)=4-4\)
\(\Leftrightarrow\frac{x-2021}{2020}+\frac{x-2021}{2018}+\frac{x-2021}{2016}+\frac{x-2021}{2014}=0\)
\(\Rightarrow x-2021=0\Rightarrow x=2021\)
Ta có :\(\frac{x-1}{2020}+\frac{x-3}{2018}+\frac{x-5}{2016}+\frac{x-7}{2014}=4\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-5}{2016}-1\right)+\left(\frac{x-7}{2014}-1\right)=0\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2018}+\frac{x-2021}{2016}+\frac{x-2021}{2014}=0\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2018}+\frac{1}{2016}+\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2020}+\frac{1}{2018}+\frac{1}{2016}+\frac{1}{2014}\ne0\)
=> x - 2021 = 0
=> x = 2021
Vậy x = 2021
Tìm số hữu tỉ x , biết rằng
e,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
f, \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
Tìm số hữu tỉ x, biết:
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}+\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}+\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(Tìm\) \(x,\) \(biết\) \(:\)
\(a)\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}+=\frac{x+1}{13}+\frac{x+1}{14}\\ b)\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\)
\(\Leftrightarrow x=0-2004\)
\(\Rightarrow x=-2004\)
Vậy \(x=-2004.\)
Chúc bạn học tốt!