Cho tỉ lệ thức a/b = c/d chứng minh a-b/c-d = 2a-3b/ 2c-3d
Cho tỉ lệ thức : a/b = c/d. Chứng minh
2a+3b/2a-3b = 2c+3d/ 2c-3d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)(đpcm)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(1\right)\)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3b}\left(=\dfrac{2k+3}{2k-3}\right)\)
Áp dụng tính chất dãy tỉ số băng nhau,ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{2a}{2c}=\dfrac{3b}{3d}=>\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3d}{2c-3d}=>\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\left(đpcm\right)\)
cho tỉ lệ thức : a/b=c/d. Chứng minh a/2a-3b = c/2c-3d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
\(\Rightarrow\frac{a}{2a-3b}=\frac{b.k}{2b.k-3b}=\frac{b.k}{\left(2k-3\right)b}=\frac{k}{2k-3}\left(1\right)\)
\(\frac{c}{2c-3d}=\frac{d.k}{2d.k-3a}=\frac{d.k}{\left(2k-3\right)d}=\frac{k}{2k-3}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{2a-3b}=\frac{c}{2c-3d}\)
Cho tỉ lệ thức a/b=c/d . chứng minh rằng ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) : a) 2a+3b/2a-3b = 2c+3d/2c-3d b) ab/cd= a^2 - b^2/c^2 - d^2 c) (a+b/c+d)^2 = a^2+b^2/c^2+d^2
cho tỉ lệ thức : a/b=c/d. Chứng minh
a) 3a+5b/3a-5b=3c+5d/3c-5d
b) 2a+3b/2a-3b=2c+2c-3d
Cho tỉ lệ thức a/b = c/d. Chứng minh rằng ta có các tỉ lệ thức sau (giá trị các tỉ lệ thức đều có nghĩa)
a) 2a +3b / 2a - 3b = 2c + bd / 2c - 3d
b)ab/cd = a2 + b2/ c2 - d2
Cho tỉ lệ thức : a/b = c/d. Chứng minh
ab/cd=(2a+3b/2c+3d)
Giúp em nhanh với ạ
Sửa đề: Chứng minh \(\dfrac{ab}{cd}=\left(\dfrac{2a+3b}{2c+3d}\right)^2\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{2a+3b}{2c+3d}\right)^2=\left(\dfrac{2bk+3b}{2dk+3d}\right)^2=\left(\dfrac{b}{d}\right)^2\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{2a+3b}{2c+3d}\right)^2\)
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh
\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
Suy ra: \(\frac{2a+3b}{2a-3b}=\frac{2.bk+3b}{2.bk-3b}=\frac{b.\left(2k+3\right)}{b.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)
\(\frac{2c+3d}{2c-3d}=\frac{2.dk+3d}{2.dk-3d}=\frac{d.\left(2k+3\right)}{d.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)
Vậy \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{2a}{2c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
=>\(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)=>\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Vậy\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng minh đẳng thức sau : \(\dfrac{2a+3b}{3a-5b}\) = \(\dfrac{2c+3d}{3c-5d}\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk, c=dk$
Khi đó:
$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$
$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$
Từ $(1); (2)$ ta có đpcm.