Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Việt Tân
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2021 lúc 19:07

Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}+\dfrac{1}{2020\cdot2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2021}=\dfrac{2021}{2021}-\dfrac{1}{2021}\)

\(=\dfrac{2020}{2021}\)

mà \(\dfrac{2020}{2021}< \dfrac{2021}{2021}=1\)

nên A<1

Olala
Xem chi tiết
Lê Tài Bảo Châu
23 tháng 11 2019 lúc 20:31

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

Khách vãng lai đã xóa

\(A=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=1-\frac{1}{2020}\)

\(=>ĐPCM\)

Khách vãng lai đã xóa
Nguyễn Thùy Trang
23 tháng 11 2019 lúc 20:32

Ta chứng minh được \(\frac{1}{m\left(m+1\right)}=\frac{m+1-m}{m\left(m+1\right)}=\frac{m+1}{m\left(m+1\right)}-\frac{m}{m\left(m+1\right)}=\frac{1}{m}-\frac{1}{m+1}\)

Ta có \(\frac{1}{1.2}=1-\frac{1}{2}\)

      \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

     .....

        \(\frac{1}{2019.2020}=\frac{1}{2019}-\frac{1}{2020}\)

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

=>\(A=1-\frac{1}{2020}< 1\)

Vậy \(A< 1\)

Khách vãng lai đã xóa
_Thankk.sanq_
Xem chi tiết
chuche
3 tháng 5 2022 lúc 10:15

\(\text{#}HaimeeOkk\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)

\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)

\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)

\(A=1-\dfrac{1}{2020}\)

\(A=\dfrac{2019}{2020}\)

Vậy \(A=\dfrac{2019}{2020}\)

Diệp Linh Đồng
Xem chi tiết
shitbo
24 tháng 8 2019 lúc 15:21

\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\) 

\(\Rightarrow a=\frac{2020}{2019}\)

Minh nhật
24 tháng 8 2019 lúc 15:24

=.> 1-1/2+1/2-1/3+.......+1/2019-1/2020=1/x

=>1-1/2020=1/x

=>2019/2020=1/x

=>2019x=2020

=>x=2020/2019

    k nha

 giúp mk lên 300sp

Darlingg🥝
24 tháng 8 2019 lúc 15:29

\(\frac{1}{1.2}+\frac{1}{2.3}+.........\frac{1}{2019.2020}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{2}+\frac{1}{3}++........\frac{1}{2020}\)

\(\Rightarrow\frac{2019}{2020}\)

vậy \(\frac{1}{x}=x=\frac{2020}{2019}\)

h.ọ.c t.ố.t

Đỗ Minh Tôm
Xem chi tiết
Nguyễn Anh Quân
19 tháng 7 2017 lúc 20:49

= 2-1/1.2 + 3-2/2.3 + 4-3/3.4 + ...... + 3024-3023/3023.3024

= 1-1/2+1/2-1/3+1/3-1/4+.....+1/3023-1/3024

= 1- 1/3024 = 3023/3024

Lạc Trôi
19 tháng 7 2017 lúc 20:49

=1-1/2+1/2-1/3+1/3-1/4+.......+1/3023-1/3014

=1-1/3024=3023/3024

k cho mình nha

Sakuraba Laura
7 tháng 3 2018 lúc 11:04

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{3023.3024}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3023}-\frac{1}{3024}\)

\(=1-\frac{1}{3024}\)

\(=\frac{3023}{3024}\)

nguyễn an bình
Xem chi tiết
.
14 tháng 6 2020 lúc 9:19

\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)

\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)

Vậy \(A=\frac{2019}{505}.\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy \(B=\frac{4949}{19800}.\)

Khách vãng lai đã xóa
Huỳnh Quang Sang
14 tháng 6 2020 lúc 9:25

\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)

\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)

\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)

Đến đây tự tính

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

Số hơi bị dữ nên tính nốt nhé

Khách vãng lai đã xóa
Nobi Nobita
14 tháng 6 2020 lúc 9:35

a) \(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+........+\frac{4}{2019.2020}\)

\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2019.2020}\right)\)

\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=4.\left(1-\frac{1}{2020}\right)=4.\frac{2019}{2020}=\frac{2019}{505}\)

Khách vãng lai đã xóa
nguyễn thu phương
Xem chi tiết
Mai Ngọc
21 tháng 1 2016 lúc 18:53

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(S=1-\frac{1}{10}=\frac{9}{10}\)

ὈbΘŕμ
Xem chi tiết
Kậu...chủ...nhỏ...!!!
1 tháng 8 2021 lúc 21:14

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\\ =\dfrac{1}{1}-\dfrac{1}{2020}=\dfrac{2019}{2020}\)

Hello
2 tháng 8 2021 lúc 7:56

A=1-1/2+1/2-1/3+...+1/2019-1/2020

A=1-1/2020

A=2019/2020

Phạm Xuân Sơn
Xem chi tiết