Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nam Dương
Xem chi tiết
svtkvtm
5 tháng 9 2019 lúc 10:18

\(\left(a-1+5-a\right)\left(3^2+4^2\right)\ge\left(3\sqrt{a-1}+4\sqrt{5-a}\right)^2\Leftrightarrow4.25=100\ge\left(3\sqrt{a-1}+4\sqrt{5-a}\right)^2\Rightarrow10^2\ge\left(3\sqrt{a-1}+4\sqrt{5-a}\right)^2\Rightarrow10\ge3\sqrt{a-1}+4\sqrt{5-a}\left(dpcm\right)\)

Phan PT
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 22:43

Ta có: 

\(b\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)

Hoàn toàn tương tự: \(b\sqrt{c^3+1}\ge b\) ;\(c\sqrt{a^3+1}\ge c\)

Cộng vế:

\(P\ge a+b+c=3\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và hoán vị

Lại có:

\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{a\left(b^2+2\right)}{2}\)

Tương tự: \(b\sqrt{c^3+1}\le\dfrac{b\left(c^2+2\right)}{2}\) ; \(c\sqrt{a^3+1}\le\dfrac{c\left(a^2+2\right)}{2}\)

\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+a+b+c=\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)

\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2+2abc\right)+3\)

Nên ta chỉ cần chứng minh: \(Q=ab^2+bc^2+ca^2+2abc\le4\)

Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ab+ac\)

\(\Rightarrow ca^2+bc^2\le abc+ac^2\)

\(\Rightarrow Q\le ab^2+ac^2+2abc=a\left(b+c\right)^2=\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị của chúng

Thái Sơn Phạm
Xem chi tiết
Thu Hien Tran
Xem chi tiết
ank viet
Xem chi tiết
Phạm Văn Việt
Xem chi tiết
Nguyễn Duy Long
21 tháng 10 2017 lúc 10:38

đơn giản :)

Nguyễn Huỳnh Bá Lộc
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Thảo Phương
Xem chi tiết