Tìm số tự nhiên n để \(n^2+2n+\sqrt{n^2+2n+18}+9\) là số chính phương
tìm tất cá các số tự nhiên n sao cho n'2+2n+ \(\sqrt{n^2+2n+18}\) +9 là số chính phương
\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.
Khi đó \(n^2+2n+18=m^2\)
\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)
Do \(m,n\)là số tự nhiên nên
\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)
Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)
\(=81=9^2\)là số chính phương (thỏa mãn).
Vậy \(n=7\).
Tìm tất cả các cặp số tự nhiên n sao cho : \(n^2+2n+\sqrt{n^2+2n+18}+9\) là số chính phương.
Tìm số tự nhiên n để biểu thức sau là số chính phương
n^2+2n+18
Lớp 8+9 : Tìm n là số tự nhiên để 2n+2017 và n+2019 là 2 số chính phương.
Ta có :
2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+2019 chia ch 4 dư 3
mà số chính phương chia cho 4 dư 0,1
=> không tồn tại n
2n + 2017 là số chính phương lẻ
=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)
=> 2n chia hết cho 8 => n chia hết cho 4
=> n + 2019 chia 4 dư 3
Mà scp chia 4 dư 0 hoặc 1
=> n + 2019 ko là scp
Vậy ko tồn tại STN n thoả mãn
Đặt \(\hept{\begin{cases}2n+2017=a^2\\n+2019=b^2\end{cases}\left(a,b\inℕ^∗\right)}\)
Dễ thấy : \(a^2\) là số chính phương lẻ, mà số chính phương lẻ chia 8 luôn dư 1. ( Điều này sẽ được chứng minh ở cuối bài làm ).
\(\Rightarrow2n+2017\equiv1\left(mod8\right)\)
\(\Rightarrow2n⋮8\) \(\Rightarrow n⋮4\)
\(\Rightarrow n+2019:4\) dư 3 hay \(\Rightarrow b^2:4\) dư 3
Lại có : một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1. ( Điều này sẽ được chứng minh ở cuối bài làm )
\(\Rightarrow n+2019\) không phải là số chính phương.
Do đó không tồn tại số tự nhiên n thỏa mãn đề.
*) Chứng minh bài toán phụ :
+) Số chính phương lẻ chia 8 dư 1 :
Ta có : \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\) chia 8 dư 1.
+) Một số chính phương chia cho 4 chỉ có thể có số dư là 0 hoặc 1.
Ta có : \(\left(2k\right)^2=4k^2⋮4\) nên khi chia 4 có số dư là 0.
\(\left(2k+1\right)^2=4k\left(k+1\right)+1\) chia 4 dư 1.
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
Tìm số tự nhiên n để n^2 + 2n + 6 là 1 số chính phương
Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\)
\(\Rightarrow n^2+2n+1+5=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)
\(\Rightarrow\left(n+1\right)^2+5=a^2\)
\(\Rightarrow a^2-\left(n+1\right)^2=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)
Ta có: \(a+n+1>a-n-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)
Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)
\(n^2+2n+6\) là số chính phương
Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)
\(\Leftrightarrow4n^2+8n+24=4k^2\)
\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)
mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)
Vậy \(n=5\) thỏa mãn đề bài
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
tìm số tự nhiên n để n mũ 2 +2n là số chính phương
n2+2n=n(n+2) là số chính phương
=> n=0
Tìm các số tự nhiên n sao cho B = n2 +2n + 18 là số chính phương
Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k thuộc N)
Suy ra (n2 + 2n + 1) + 11 = k2
Suy ra k2 – (n+1)2 = 11
Suy ra (k+n+1)(k-n-1) = 11
Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1
+ Với k+n+1 = 11 thì k = 6
Thay vào ta có : k – n - 1 = 1
6 - n - 1 =1 Suy ra n = 4
Đặt \(n^2+2n+18=a^2\left(a\inℕ;n\inℕ\right)\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=17\)
\(\Leftrightarrow\left(a+n+1\right)\left(a-n-1\right)=17\)
Vì \(a\inℕ;n\inℕ\) nên \(\left(a+n+1\right)>\left(a-n-1\right)\); 17 là số nguyên tố
\(\Rightarrow a+n+1=17\)(*)
và a - n - 1 = 1 hay a = n + 2
Thay a = n +2 vào (*) tính được n = 7