phân tích thành nhân tử
(x-a)4+4a^4
Phân tích đa thức sau thành nhân tử:
(x-a)^4 + 4a^4
thêm bớt 4(x-a)^2 . a^2 là được
nói rõ ra đc ko bạn
Phân tích đa thức sau thành nhân tử : b^4 + 4a^4
Ta có:\(b^4+4a^4=b^4+4a^2b^2+4a^4-4a^2b^2\)
\(=\left(a^2\right)^2+2.a^2.\left(2b^2\right)+\left(2b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)
Phân tích đa thức sau thành nhân tử: a2 – b2 – 4a + 4
a2 – b2 – 4a + 4
= a2 – 4a + 4 – b2
= (a – 2)2 – b2
= (a – 2 + b)(a – 2 – b)
= (a + b – 2)(a – b – 2)
phân tích đa thức thành nhân tử
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4.\)
\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4.\)
\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4.\)
\(=\left(x+5ax+4a^2+a^2\right)^2.\)
\(=\left(x+5ax+5a^2\right)^2.\)
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(=\)\(\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4\)
\(=\)\(\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\)\(\left[\left(x^2+5ax+5a^2\right)-a^2\right].\left[\left(x^2+5ax+5a^2\right)-a^2\right]+a^4\)
\(=\)\(\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)
\(=\)\(\left(x^2+5ax+5a^2\right)^2\)
Chúc bạn học tốt ~
phân tích đa thguwcs thành nhân tử:
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
(x + a)(x + 2a)(x + 3a)(x + 4a) + a4
= (x + a)(x + 4a)(x + 2a)(x + 3a) + a4
= (x2 + 4ax + ax + 4a2)(x2 + 3ax + 2ax + 6a2) + a4
= (x2 + 5ax + 4a2)(x2 + 5ax + 6a2) + a4
Đặt x2 + 5ax + 4a2 = t
= t(t + 2a2) + a4
= (t + a2)2
= (x2 + 5ax + 4a2 + a2)2
= (x2 + 5ax + 5a2)2
Cách đặt khác ez hơn :))
\(A=\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(A=\left[\left(x+a\right)\left(x+4a\right)\right]\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)
\(A=\left(4a^2+5ax+x^2\right)\left(6a^2+5ax+x^2\right)+a^4\)
Đặt \(p=5a^2+5ax+x^2\)
\(\Rightarrow A=\left(p-a^2\right)\left(p+a^2\right)+a^4\)
\(\Rightarrow A=p^2-a^4+a^4\)
\(\Rightarrow A=p^2\)
Thay \(p=5a^2+5ax+x^2\)vào A ta có :
\(A=\left(5a^2+5ax+x^2\right)^2\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
1, 3a-3b+a-2ab+b^2
2, a^3-a^2b-ab^2-b^3
3, a^3+a^2-4a-4
4, x^2y^2+1-x^2-y^2
\(3,\)Nhẩm nghiệm của đa thức trên ta đc : -1
Ta có lược đồ sau :
1 | 1 | -4 | -4 | |
-1 | 1 | 0 | -4 | 0 |
Phân tích thành nhân tử ta có :\(\left(x+1\right)\left(x^2-4\right)\)
Phân tích đa thức thành nhân tử :
a) 4a^2b^2 + 36a^2b^3 + 6ab^4
b) 4a^2b^3 - 6a^3b^2
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
phân tích thành nhân tử
a) a^2-4a+4b-b^2
b) x^2+4xy+ 1-2x-2y
c) 7x^2-3x+4=0
Câu 19: Phân tích (a2+ 4)2 – 16a2 thành nhân tử ta được
A. (a –2)2(a + 2)2
B. (a + 2)4
C. (a2+ 4a + 4)(a2 – 2a + 1)
D. (a2+ 4)2
\(\left(a^2+4\right)^2-16a^2\\ =\left(a^2+4\right)^2-\left(4a\right)^2\\ =\left(a^2-4a+4\right)\left(a^2+4a+4\right)\\ =\left(a-2\right)^2\left(a+2\right)^2\)
Chọn A.