a, 4.(x-3)=72-13
b, 5x+x=150:2+3
4. Tìm x
Z biết:
a) | 2x – 5 | = 13
b) 7x + 3| = 66
c) | 5x – 2| 0
`a)|2x-15|=13`
`**2x-15=13`
`<=>2x=28`
`<=>x=14.`
`**2x-15=-13`
`<=>2x=-2`
`<=>x=-1.`
`b)|7x+3|=66`
`**7x+3=66`
`<=>7x=63`
`<=>x9`
`**7x+3=-66`
`<=>7x=-69`
`<=>x=-69/7`
`c)|5x-2|=0`
`<=>5x-2=0`
`<=>5x=2`
`<=>x=2/5`
\(a,\Leftrightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
Vậy ...
\(b,\Leftrightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{69}{7}\end{matrix}\right.\)
Vậy ...
\(c,\Leftrightarrow5x-2=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy ...
a \(\Rightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=18\\2x=-8\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
b \(\Rightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}7x=63\\7x=-69\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{69}{7}\end{matrix}\right.\)
c \(\Rightarrow5x-2=0\Rightarrow x=\dfrac{2}{5}\)
Tìm x:
a) 165-(35x+3).19=13
b) 3.(x+7)-15=27
c) 96: (mở ngoặc vuông) 3.(x+1) (đóng ngoặc vuông)=2
d) (120-5x)+10 mủ 2.2:5=2 mủ 2.15
e) (x-1)+(x-2)+(x-3)+(x-4)=30
g) (x+1)+(2x+2)+(3x+3)+(4x+4)=70
Lưu ý: Trong câu c, do mik ko có dấu ngoặc vuông nên mik phải viết ra. Tiếp theo, khi các bạn thấy ở câu a, sau khi đóng ngoặc biểu thức rồi . với 16 có nghĩa là nhân với 16. Tiếp, ví dụ, khi các bạn thấy trong câu g có biểu thức 2x có nghĩa là 2.x. Cuối cùng, chữ x là x chứ ko phải là dấu nhân nhé. Mik mong các bn có thể giải nhanh giúp mik bài này. Hỡi các trạng nguyên Toán, mau lại đây giải Toán nào!!!
\(a,\Rightarrow\left(35x+3\right)\cdot19=152\\ \Rightarrow35x+3=8\\ \Rightarrow x=\dfrac{1}{7}\\ b,\Rightarrow3\left(x+7\right)=42\\ \Rightarrow x+7=14\Rightarrow x=7\\ c,\Rightarrow3\left(x+1\right)=48\\ \Rightarrow x+1=16\Rightarrow x=15\\ d,\Rightarrow120-5x+100\cdot2:5=4\cdot15\\ \Rightarrow120-5x+40=60\\ \Rightarrow5x=100\Rightarrow x=20\\ e,\Rightarrow4x-10=30\\ \Rightarrow4x=40\\ \Rightarrow x=10\\ g,\Rightarrow10x+10=70\\ \Rightarrow10x=60\\ \Rightarrow x=6\)
Giải các PT
a,:\(x^4-2x^3-x^2-2x+1=0\)
b,\(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c,\(x^2+\sqrt{x+72}=72\)
a) Ta có : x=0 không là nghiệm của phương trình. Chia cả hai vế của phương trình cho \(^{x^2}\) ta có:
\(x^2-2x-1-\frac{2}{x}+\frac{1}{x^2}=0\) \(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)-1=0\) (1)
Đặt \(x+\frac{1}{x}=t\) \(\left(t>2\right)\) hoăc \(\left(t
a,4.(x-3)=7^2-1^3
b,5x+x=150/2+3
\(a,4\left(x-3\right)=7^2-1^3\)
\(4\left(x-3\right)=49-1\)
\(4\left(x-3\right)=48\)
\(\Rightarrow x-3=48:4\)
\(x-3=24\)
\(\Rightarrow x=27\)
\(5x+x=\frac{150}{2}-3\)
\(6x=75-3\)
\(6x=72\)
\(\Rightarrow x=12\)
a, 4( x - 3) = 72 - 13
<=> 4x - 12 = 49 - 1
<=> 4x = 49 - 1 +12
<=> x = 15
Vậy....
b, 5x + x = \(\frac{150}{2}\)+ 3
<=> 5x + x = 75 + 3
<=> 6x = 78
<=> x = 13
Vậy......
a)\(\sqrt{5x-2}=3\)
b)\(\sqrt{x^2-4x+4}-5=0\)
c)\(3\sqrt{4x+8}-\sqrt{9x+18}+9.\sqrt{\dfrac{x+2}{9}}=\sqrt{72}\)
`a)sqrt{5x-2}=3(x>=2/5)`
`<=>5x-2=9`
`<=>5x=11`
`<=>x=11/5(tm)`
`b)sqrt{x^2-4x+4}-5=0`
`<=>\sqrt{(x-2)^2}=5`
`<=>|x-2|=5`
`<=>` \(\left[ \begin{array}{l}x-2=5\\x-2=-5\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\)
`c)3sqrt{4x+8}-sqrt{9x+18}+9sqrt{(x+2)/9}=sqrt{72}(x>=-2)`
`<=>6sqrt{x+2}-3sqrt{x+2}+3sqrt{x+2}=sqrt{72}`
`<=>6sqrt{x+2}=6sqrt2`
`<=>sqrt{x+2}=sqrt2`
`<=>x+2=2`
`<=>x=0(tm)`
\(a,ĐK:x\ge\dfrac{2}{5}\)
\(\Leftrightarrow5x-2=9\)
\(\Leftrightarrow5x=11\)
\(\Leftrightarrow x=\dfrac{11}{5}\)
\(b,\)
\(\Leftrightarrow x^2-5x+4=25\)
\(\Leftrightarrow x^2-5x-21=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{109}}{2}\\x=\dfrac{5-\sqrt{109}}{2}\end{matrix}\right.\)
\(c,\)
\(\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}+9\cdot\sqrt{\dfrac{x+2}{9}}=6\sqrt{2}\)
\(\Leftrightarrow2\sqrt{x+2}-\sqrt{x+2}+3\cdot\sqrt{\dfrac{x+2}{9}}=2\sqrt{2}\)
Đặt \(\sqrt{x+2}=a\) ta có (1)
\(2a-a+3\cdot\dfrac{a}{\sqrt{9}}=2\sqrt{2}\)
\(\Leftrightarrow a+3\cdot\dfrac{a}{3}=2\sqrt{2}\)
\(\Leftrightarrow2a=2\sqrt{2}\)
\(\Leftrightarrow a=\sqrt{2}\)
Thay \(a=\sqrt{2}\) vào (1) ta có
\(\sqrt{x+2}=\sqrt{2}\)
\(\Leftrightarrow x+2=2\)
\(\Leftrightarrow x=0\)
Xác định a,b để
a. A=x^4+3x^3-17x^2+ax+b chia het cho B=x^2+5x-3
b. P=x^5+7x^4+ax^2+bx+72 chia hết cho Q=x^3-2x^2+4
Xác định a,b để
a. A=x^4+3x^3-17x^2+ax+b chia het cho B=x^2+5x-3
b. P=x^5+7x^4+ax^2+bx+72 chia hết cho Q=x^3-2x^2+4
Cho biểu thức A=\(\sqrt{x^2+2x+\frac{3}{4}+\sqrt{x^2+3x+\frac{9}{4}}}\) với x\(\ge\frac{-3}{2}\)
1. Tìm min A
2. Tìm các giá trị của x, biết 2A=\(2x^3+5x^2+5x+3\)
1.giải các phương trình sau:
a.5-(x-6)=4(3-2x)
b.\(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c.\(x^4+5x^3-12x^2+5x+1=0\)