Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
:>>>
Xem chi tiết
nguyen the anh
Xem chi tiết
Sang Trương Tuấn
7 tháng 4 2016 lúc 17:48

Ta co: \(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^4\ge2y^3-y^2\)  

\(\Rightarrow x^2+y^3\ge x^3+y^4\ge2y^3-y^2+x^3\Leftrightarrow x^2+y^2\ge x^3+y^3\)

k giai tiep

Đạt Trần Tiến
Xem chi tiết
Sherry
Xem chi tiết
Đại gia không tiền
Xem chi tiết
Lê Gia Bảo
Xem chi tiết
Akai Haruma
14 tháng 11 2019 lúc 13:26

Lời giải:

Do $x,y,z\in [0;2]\Rightarrow (x-2)(y-2)(z-2)\leq 0$

$\Leftrightarrow xyz-2(xy+yz+xz)+4(x+y+z)-8\leq 0$

$\Leftrightarrow 2(xy+yz+xz)\geq 4(x+y+z)-8+xyz$

Mà $4(x+y+z)-8+xyz=4.3-8+xyz=4+xyz\geq 4$ do $x,y,z\geq 0$

Do đó $2(xy+yz+xz)\geq 4$

Suy ra $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=9-2(xy+yz+xz)\leq 9-4=5$

Ta có đpcm. Dấu "=" xảy ra khi $(x,y,z)=(2,1,0)$ và các hoán vị.

Khách vãng lai đã xóa
tthnew
19 tháng 11 2019 lúc 9:04

Có nhiều cách!

Cách 2:Giả sử \(x\ge y\ge z\Rightarrow3x\ge x+y+z=3\Rightarrow2\ge x\ge1\)

Ta có: \(x^2+y^2+z^2\le x^2+y^2+2yz+z^2=x^2+\left(y+z\right)^2\)

\(=x^2+\left(3-x\right)^2=2x^2-6x+9\)

\(=2\left(x-1\right)\left(x-2\right)+5\le5\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và các hoán vị

Vậy...

Cách 3: Dùng khai triển Abel: Câu hỏi của Thảo Lê - Toán lớp 8 - Học toán với OnlineMath (em không chắc lắm nhưng cứ đăng)

Khách vãng lai đã xóa
Hoàng Thị Thu Hà
Xem chi tiết
alibaba nguyễn
14 tháng 6 2017 lúc 9:10

\(y=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(\Rightarrow y^2=2x+2\sqrt{x+2\sqrt{x-1}}.\sqrt{x-2\sqrt{x-1}}\)

\(\Leftrightarrow y^2=2x+2\sqrt{\left(2-x\right)^2}=2x+4-2x=4\)

\(\Rightarrow y=2\)

Phạm Kim Oanh
Xem chi tiết
Vô danh
Xem chi tiết
Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:31

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:08

-Tham khảo:

undefined

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:12

-Tham khảo:

undefined