cho A = 2019 + |8 – 4x|. Tìm giá trị nhỏ nhất của A
tìm giá trị nhỏ nhất của A = x^2+2y^2+4y+2xy-4x+2019
Do A nhỏ nhất
Suy ra : x^2 = 0, 2y^2 = 0 , 4y = 0 .......( tất cả số hạng bằng 0)
Suy ra A= 2019
\(A=x^2+2y^2+4y+2xy-4x+2019\)
\(A=\left(x^2+y^2-2^2+2xy-4y-4x\right)+\left(y^2+8y+4^2\right)+2007\)
\(A=\left(x+y-2\right)^2+\left(y+4\right)^2+2007\ge2007\)
Vậy \(Min_A=2007\) khi \(\hept{\begin{cases}x+y-2=0\\y+4=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-4\end{cases}}\hept{\begin{cases}x=6\\y=4\end{cases}}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm giá trị nhỏ nhất của biểu thức (x-3)(4x+5)+2019
\(\left(x-3\right)\left(4x+5\right)+2019\)
\(=4x^2-7x-15+2019\)
\(=4x^2-7x+2004\)
\(=4\left(x^2-\frac{7}{4}x+501\right)\)
\(=4\left(x^2-\frac{7}{4}x+\frac{49}{64}+\frac{32015}{64}\right)\)
\(=4\left[\left(x-\frac{7}{8}\right)^2+\frac{32015}{64}\right]\)
\(=4\left[\left(x-\frac{7}{8}\right)^2\right]+\frac{32015}{16}\ge\frac{32015}{16}\)
Vậy GTNN của bt là \(\frac{32015}{16}\Leftrightarrow x-\frac{7}{8}=0\Leftrightarrow x=\frac{7}{8}\)
mk tưởng 7/4
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
cho C(x)=-8+4x3-4x4
a) tìm nghiệm của C(x)
b)tìm x để đa thức M(x)=C(x)+x2 có giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
Tìm giá trị nhỏ nhất của các biểu thức
H = \(\dfrac{-2021}{4x^2+4x+3}\)
I = \(\dfrac{-2019}{5x^2-2x+10}\)
1) \(4x^2+4x+3=\left(2x+1\right)^2+2\ge2\)
\(\Rightarrow\dfrac{2021}{4x^2+4x+3}\le\dfrac{2021}{2}\Rightarrow H=-\dfrac{2021}{4x^2+4x+3}\ge-\dfrac{2021}{2}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{1}{2}\)
2) \(5x^2-2x+10=5\left(x^2-\dfrac{2}{5}x+\dfrac{1}{25}\right)+\dfrac{49}{5}=5\left(x-\dfrac{1}{5}\right)^2+\dfrac{49}{5}\ge\dfrac{49}{5}\)
\(\Rightarrow I=\dfrac{-2019}{5x^2-2x+10}\ge-\dfrac{10095}{49}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{5}\)
Tìm giá trị nhỏ nhất của các biểu thức
A = | 4x-3 | + | 5y+7,5 | + 17,5
B = | x-2 | + | x-6 | + 2017
C = (2x+1)^2020 - 2019
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow A\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)
\(=\left|x-2\right|+\left|6-x\right|+2017\)
Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)
\(\Rightarrow B\ge4+2017=2021\)
Dấu "=" xảy ra khi \(2\le x\le6\)
....
\(C=\left(2x+1\right)^{2020}-2019\)
Ta thấy \(\left(2x+1\right)^{2020}\ge0\)
\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)
Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
....
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Với x>0 tìm giá trị nhỏ nhất của M = 4x2-3x+\(\frac{1}{4x}\)+2019