(3x-1)(3x+1)-3(3x-2)^2=11
Tìm x 5/11-3x=2/3x-2;x-11/x-3=2/3;-4x-3/4=1-3x/3 giải giúp em nha
Tìm giá trị của x để biểu thức sau có số chỉ bằng 0
1/6(1-3x)-1/(3x-1)^2+1/6(3x+11)+3/(3x+11)^2
\(\dfrac{1}{6\left(1-3x\right)}-\dfrac{1}{\left(3x-1\right)^2}+\dfrac{1}{6\left(3x+11\right)}+\dfrac{3}{\left(3x+11\right)^2}=0\)
\(\Leftrightarrow\dfrac{-1}{6\left(3x-1\right)}-\dfrac{1}{\left(3x-1\right)^2}=\dfrac{-1}{6\left(3x+1\right)}-\dfrac{3}{\left(3x+11\right)^2}\)
\(\Leftrightarrow-\left(3x-1\right)-6=-1\left(3x+11\right)-18\)
=>-3x+1-6=-3x-11-18
=>-3x-5=-3x-19
=>-5=-19(vô lý)
giải phương trình sau
1/ ( x-3) ^2 =16
2/ (3x-1)^3 =8
3/ (x-11)^3 =-27
4/ x^3 -3x^2 +3x-1'
1/ ( x-3) 2=16
\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
2/ (3x-1)3=8
\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)
3/ (x-11)3=-27
\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)
phần 4 mình ko rõ đề
4) \(x^3-3x^2+3x-1=-64\)
\(\Rightarrow x^3-3x^2+3x+63=0\\ \Rightarrow\left(x^3+3x^2\right)-\left(6x^2+18x\right)+\left(21x+63\right)=0\\ \Rightarrow x^2\left(x+3\right)+6x\left(x+3\right)+21\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x^2+6x+21\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x^2+6x+21=0\end{matrix}\right.\)
\(x+3=0\\ \Rightarrow x=-3\)
\(x^2+6x+21=0\\ \Rightarrow\left(x^2+6x+9\right)+12=0\\ \Rightarrow\left(x+3\right)^2+12=0\)
Vì \(\left(x+3\right)^2\ge0;12>0\Rightarrow\left(x+3\right)^2+12>0\Rightarrow x^2+6x+21vônghiệm\)
Vậy \(x=-3\)
GPT sau:
a) ( x-1)(5x+3)= (3x - 8 )(x-1)
b) 3x ( 25x + 15 )- 35 ( 5x+3) = 0
c) (2-3x ) ( x-11)=(3x-2)(2- 5x)
Giups mk vs thank cacs bn
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
a) Ta có: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\Leftrightarrow5x^2+3x-5x-3=3x^2-3x-8x+8\)
\(\Leftrightarrow5x^2-2x-3=3x^2-11x+8\)
\(\Leftrightarrow5x^2-2x-3-3x^2+11x-8=0\)
\(\Leftrightarrow2x^2+9x-11=0\)
\(\Leftrightarrow2x^2+11x-2x-11=0\)
\(\Leftrightarrow x\left(2x+11\right)-\left(2x+11\right)=0\)
\(\Leftrightarrow\left(2x+11\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+11=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-11\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{11}{2};1\right\}\)
b) Ta có: \(3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow3x\cdot5\cdot\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(5x+3\right)\left(15x-35\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\15x-35=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\15x=35\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) Ta có: \(\left(2-3x\right)\left(x-11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow2x-22-3x^2+33x=6x-15x^2-4+10x\)
\(\Leftrightarrow-3x^2+35x-22=-15x^2+16x-4\)
\(\Leftrightarrow-3x^2+35x-22+15x^2-16x+4=0\)
\(\Leftrightarrow12x^2+19x-18=0\)
\(\Leftrightarrow12x^2+27x-8x-18=0\)
\(\Leftrightarrow3x\left(4x+9\right)-2\left(4x+9\right)=0\)
\(\Leftrightarrow\left(4x+9\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+9=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-9\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{9}{4};\dfrac{2}{3}\right\}\)
Chứng minh rằng : 3x+1 + 3x+2 +3x+3 +...+3x+11+ 3x+12 chia hết cho 39 ,x là số tự nhiên
\(=3^{x+1}\left(1+3+3^2\right)+...+3^{x+10}\left(1+3+3^2\right)=\)
\(=3^x.3.13+...+3^{x+9}.3.13=\)
\(39\left(3^x+...+3^{x+9}\right)⋮39\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
rút gọn A,B,C
A=(3x+7)(2x+3)-(3x-5)(2x+11)
B=(x2-2)(x2+x-1)-x(x3+x2-3x-2)
C=x(x3+x2-3x-2)-(x2-2)(x2+x-1)
\(A=6x^2+23x+21-\left(6x^2+23x-55\right)=76\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ C=x^4+x^3-3x^2-2x-\left(x^4+x^3-x^2-2x^2-2x+2\right)\\ =-2\)
giải các Phương trình sau
a) x/2+x/3=1/4-x5
b) ( x+1)^2-5=x^2+11
c) 3.(3x-1)=3x+5
d) 3x.(2x-3)-3.(3+2x^2)=0
e) (3x-1)^2-3.(3x-2)=9.(x+1).(x-3)
f) (x-1)^2-x.(x+1)+3.(x-2)+5=0
a, làm tương tự với phần b bài nãy bạn đăng
b, \(\left(x+1\right)^2-5=x^2+11\)
\(\Leftrightarrow x^2+2x+1-5=x^2+11\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! )
c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)
\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)
d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)
\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)
e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )
f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)
\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)
\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí
Vậy phương trình vô nghiệm
1-3x+3x^2-x^3 tại x=11
\(1-3x+3x^2-x^3=\left(1-x\right)^3=\left(1-11\right)^3=-10^3=-1000\)