Cho tam giác ABC nhọn (AB>AC>BC) có BE là đường phân giác. Kẻ CF vuông góc với BE, AH vuông góc BE. CF cắt đường trung tuyến BD của tam giác ABC tại G. Chứng minh DF đi qua trung điểm của EG.
Cho tam giác ABC nhọn (AB>AC>BC) có BE là đường phân giác. Kẻ CF vuông góc với BE, AH vuông góc BE, CF cắt đường trung tuyến BD của tam giác ABC tại G. Chứng minh DF đi qua trung điểm của EG.
Cho tam giác ABC nhọn (AB>AC>BC) có BE là đường phân giác. Kẻ CF vuông góc với BE, AH vuông góc BE đường thẳng này cắt đường trung tuyến BD của tam giác ABC tại G. Chứng minh DF đi qua trung điểm của EG.
Cho tam giác ABC nhọn (AB>AC>BC) có BE là đường phân giác. Kẻ CF vuông góc với BE, đường thẳng này cắt đường trung tuyến BD của tam giác ABC tại G. Chứng minh DF đi qua trung điểm của EG.
Cho tam giác ABC nhọn (AB>AC>BC) có BE là đường phân giác. Kẻ CF vuông góc với BE, đường thẳng này cắt đường trung tuyến BD của tam giác ABC tại G. Chứng minh DF đi qua trung điểm của EG.
Giúp mình với!!! Mai mình nộp rồi
Cho tam giác ABC có AB=7cm, BC=4cm, AC=6cm. Kẻ đường phân giác BE của tam giác ABC(E∈ACE∈AC)
a)Tính CE, AE
b)Kẻ CF⊥BE;AH⊥BECF⊥BE;AH⊥BE.Chứng minh AB.BF=BC.BH
c)CF cắt đường trung tuyến BD của tam giác ABC tại G.Chứng minh DF đi qua trung điểm của EG
Cho tam giác ABC có AB>BC. Từ c kẻ vuông góc với phân giác BE của tam giác ABC tại F, CF cắt AB tại K. Vẽ trung tuyến BD cắt AC tại G. CMR đoạn DF đi qua trung điểm của GE
Cho tam giác ABC có BC < BA, đường phân giác BE và trung tuyến BD ( E và D thuộc AC). Đường thẳng vuông góc với BE kẻ từ C cắt BE,BD tại F và G. Chứng minh rằng:a)GE//BCb)DF đi qua trung điểm của GE
Cho tam giác nhọn ABC có AB<AC, các đường cao AD, BE, CF cắt nhau tại H. ĐƯờng thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại điểm K. Gọi M là trung điểm của BC, I là trung điểm của AK
a) CHứng minh: BE<CF và \(IM=\dfrac{1}{2}AH\)
b) Gọi G là trọng tâm của tam giác ABC. CHứng minh: 3 điểm H, G, I thẳng hàng.
c) CM: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
a) Ta có:
\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\) ⇒ \(BH\text{//}KC\)
\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\) ⇒ \(CH\text{//}BK\)
\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)
⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC
⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)
Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)
⇒ \(IM\) là đường trung bình của \(\Delta AHK\)
⇒ \(IM=\dfrac{1}{2}AH\) \(\left(ĐPCM\right)\)
c)
Ta có:
\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)
\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)
\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)
⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)
⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\) \(\left(ĐPCM\right)\)
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB