CMR a^2/(b-c)^2+b^2/(a-c)^2+c^2/(a-b)^2>=2
1)Rút gọn biểu thức
a)(a+b-c)^2+(a-b+c)^2-2(b-c)^2
b)(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
c)(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-c-b)^2
2)CMR:(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz) với x,y,z khác 0 thì x/a=b/y=c/z
3)Cho (a+b+c)^2=3(a^2+b^2+c^2).CMR a=b=c
4)Cho (a+b+c)^2=3(ab+bc+ca).CMR a=b=c
Bài 1: Cho a2 + b2 + c2 = ab + bc + ca và a+b+c = 9. CMR a=b=c=3
Bài 2: Cho a2 + b2 + c2 + 3 = 2(a+b+c). CMR a=b=c=1
Bài 3: Cho (a+b+c)2 = 3(a+b+c). CMR a=b=c
Bài 4: Cho (a-b)2 + (b-c)2 + (c-a)2 = (a+b-2c)2 + (b+c-2a)2 + (c+a-2b)2. CMR a=b=c
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
cho a, b, c > 0 cmr a^2/(b^2+c^2) + b^2/(c^2+a^2) + c^2/(a^2+b^2) >= a/(b+c) + b/(c+a) + c/(a+b)
cho tỉ lệ thức a/b=c/d .CMR: a/b=c/d cmr ab/cd=a^2-b^2/ab=c^2-d^2/cd và (a+b)^2/a^2+b^2=(c+d)^2/c^2+d^2
CMR vs a,b,c là các số thực dương thì a^2/(b^2+c^2)+b^2/(c^2+a^2)+c^2/a^2+b^2>=a/(b+c)+b/(a+c)+c/(a+b)
cho a/c=c/b . CMR : a, a/b = ( a^2 + c^2)/(b^2+c^2)
b, ( b-a )/a = ( b^2 - a^2 )/(a^2 + c ^2 )
Đặt:
\(\dfrac{a}{c}=\dfrac{c}{b}=k\Rightarrow\left\{{}\begin{matrix}a=ck\\c=bk\\a=bk^2\end{matrix}\right.\)
\(\dfrac{a}{b}=\dfrac{bk^2}{b}=k^2\)
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{ck^2+bk^2}{b^2+c^2}=\dfrac{k^2\left(c^2+b^2\right)}{b^2+c^2}=k^2\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a^2+c^2}{b^2+c^2}\)
\(\Rightarrowđpcm\)
Tương tự
cho a^2/b^2 +b^2/c^2 +c^2/a^2 = a/c +c/b +b/a cmr a=b=c
áp dụng bất đẳng thức côsi cho hai số dương
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\frac{a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\)
cộng vế theo vế
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
dấu "=" xảy ra khi \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{a^2}\Leftrightarrow a=b=c\)
a, Cho a/b = c/d . CMR : a+b/2b = c+d/2d
b, Cho a/c = c/b . CMR : a^2+c^2 / b^2+c^2 = a/b
c, Cho b^2 = ac ( a , b , c # 0 ) . CMR :
a/c = ( a + 2012b )^2 / ( c + 2012c )^2
d, Cho a/b = c/d . CMR :
5a + 3b / 5a - 3b = 5c + 3d / 5c - 3d
MỌI NGƯỜI LM ĐC CÂU NÀO THÌ LM NHA !
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Bài 3:
Áp dụng BĐT Bunhiacopxky:
$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$
$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$
$=2+a+b\leq 2+\sqrt{2}$
$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$
1. CMR : a+b+c=0 thi a^4+b^4+c^4=2(ab+bc+ca)^2
2. CMR : a^2/b^2 + b^2/c^2 + c^2/a^2 >= c/b + b/a + a/c
M.N GIUP MK VS , TOI NAY MK PHAI NOP ROI
1)a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)
CẦn chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm
2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1
BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z
<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà )
<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0
<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM
Dấu = xảy ra <=> x = y = z <=> a = b = c
Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c
- - - - - - - - - - - - -- - - - - -