Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Gia Bảo
Xem chi tiết
Hoàng Thảo Hiên
Xem chi tiết
Yến Nhi Huỳnh
28 tháng 3 2017 lúc 23:38

<=>  (x+x +4)2 + 2 . 4x(x2+ x + 4) + (4x)2 = 0

<=>  ( x2 + x+ 4 +4x )2 = 0

<=>  [(x2 + x) + (4 +4x)]  =0

<=>  [x(x+1) + 4(1+x)]  =0

<=>  (x+1) + (x+4)  =0

x+1 = 0 <=> x= -1x+4 = 0 <=> x= -4
Lâm Thị Thu Thảo
Xem chi tiết
8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 10:28

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

Phương Nguyễn
Xem chi tiết
ILoveMath
22 tháng 8 2021 lúc 22:18

a, \(16x^2-\left(1+\sqrt{3}\right)^2=0\\ \Rightarrow\left(4x-1-\sqrt{3}\right)\left(4x+1+\sqrt{3}\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x-1-\sqrt{3}=0\\4x+1+\sqrt{3}=0\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{3}}{4}\\x=\dfrac{-1-\sqrt{3}}{4}\end{matrix}\right.\)

b, \(x-2\sqrt{2x}+2=8\\ \Rightarrow x-\sqrt{8x}-6=0\\ \Rightarrow x-6=\sqrt{8x}\\ \Rightarrow\left(x-6\right)^2=\sqrt{8x}^2\\ \Rightarrow x^2-12x+36=8x\\ \Rightarrow x^2-20x+36=0\\ \Rightarrow\left(x^2-2x\right)-\left(18x-36\right)=0\)

    \(\Rightarrow x\left(x-2\right)-18\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-18\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-18=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=18\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 22:16

1: Ta có: \(16x^2-\left(\sqrt{3}+1\right)^2=0\)

\(\Leftrightarrow\left(4x-\sqrt{3}-1\right)\left(4x+\sqrt{3}+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}+1}{4}\\x=\dfrac{-\sqrt{3}-1}{4}\end{matrix}\right.\)

2: Ta có: \(x-2\sqrt{2x}+2=8\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=2\sqrt{2}\\\sqrt{x}-2=-2\sqrt{2}\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\sqrt{2}+2\)

\(\Leftrightarrow x=12+8\sqrt{2}\)

Lấp La Lấp Lánh
22 tháng 8 2021 lúc 22:19

a) \(16x^2-\left(1+\sqrt{3}\right)^2=0\Leftrightarrow\left(4x-1-\sqrt{3}\right)\left(4x+1+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1-\sqrt{3}=0\\4x+1+\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\dfrac{1+\sqrt{3}}{4}\)

b) \(x-2\sqrt{2x}+2=8\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{2}=2\sqrt{2}\\\sqrt{x}-\sqrt{2}=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\sqrt{2}\\\sqrt{x}=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=18\)(do \(\sqrt{x}\ge0\ne-\sqrt{2}\))

 

Vũ Ngọc Duy Anh
Xem chi tiết
bùi quỳnh nga
Xem chi tiết
Hà Thị Tố Uyên
Xem chi tiết
Trang-g Seola-a
Xem chi tiết