Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 23:33

\(tanB=\dfrac{AC}{AB}=\sqrt{3}\Rightarrow B=60^0\)

\(\Rightarrow\widehat{BAM}=\widehat{B}=60^0\)

\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)

\(\overrightarrow{BA}.\overrightarrow{AM}=-\overrightarrow{AB}.\overrightarrow{AM}=-AB.AM.cos\widehat{BAM}=-\dfrac{a^2}{2}\)

Thiên bình cute
Xem chi tiết
Nguyễn Anh Quân
4 tháng 1 2018 lúc 15:27

a, Diện tích tam giác ABC là :

          S ABC^2 = (4+5+8)/2 . [(4+5+8)/2-4] . [(4+5+8)/2-5] . [(4+5+8)/2-6] 

                        = 8,5 . 4,5 . 3,5 . 0,5 = 669,375 ( công thức hê-rông rùi bình phương 2 vế lên )

=> S ABC = 25,87228247 (cm2)

Tk mk nha

senorita
Xem chi tiết
Thanh Bình
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 8:15

\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)

Trang Vũ
Xem chi tiết
Thư Trần
Xem chi tiết
hagdgskd
Xem chi tiết
dragom Đức
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 1:29

Lời giải:

a. Áp dụng định lý Pitago: 

$BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+6^2}=2\sqrt{13}$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{4.6}{2\sqrt{13}}=\frac{12\sqrt{13}}{13}$ (cm)

b. Vì tam giác $ABC$ vuông tại $A$ nên $AM=\frac{BC}{2}=\sqrt{13}$ (cm)

 

Akai Haruma
2 tháng 8 2021 lúc 22:24

Nếu $\widehat{A}=120^0$ thì giải như sau:

$\widehat{HAB}=180^0-\widehat{BAC}=180^0-120^0=60^0$

Xét tam giác $HAB$ vuông tại $H$:

$\frac{AH}{AB}=\cos \widehat{HAB}$

$AH=AB\cos \widehat{HAB}=4\cos 60^0=2$ 

b.

Áp dụng định lý Pitago:

$BH^2=AB^2-AH^2=4^2-2^2=12$

$CH=AH+AC=2+6=8$ 

$BC^2=BH^2+CH^2=12+8^2=76$ 

$AM^2=\frac{2(AB^2+AC^2)-BC^2}{4}=\frac{2(4^2+6^2)-76}{4}=7$

$\Rightarrow AM=\sqrt{7}$