chung minh rang moi n nguyen huong ta luon co
4^n+3+4^n+2-4^n+1-4^n chia het cho 300
chung minh rang voi moi n nguyen duong ta luon co
4^n+3+4^n+2-4^n+1-4^nchia het cho 300
Ta có:
4n+3 +4n+2 -4n+1 -4n
=4n-1 .44 + 4n-1 . 43 - 4n-1 . 42 - 4n-1 .4
=4n-1 . (44 +43 - 42 -4)
=4n-1 . 300 : 300
= 4n+3 + 4n+2 -4n+1 -4n \(⋮\) 300 (ĐPCM)
Đặt A=4^{n+3}+4^{n+2}-4^{n+1}-4^n
A= 4^n-1(4^4+4^3-4^2-4)
A=4^n-1.300⋮300
k cho mik nha học tốt.
chung minh rang voi moi so nguyen n ,ta co n^3-n luon chia het cho 6
\(n^3-n=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)=\left(n-1\right).n.\left(n+1\right)\)
Ta thấy n-1;n;n+1 là ba số tự nhiên liên tiếp
Mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
Nên \(n^3-n\) luôn chia hết cho 6.
Tham khảo, chúc bạn học thật giỏi!
\(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\)
Dễ thấy: \(n-1;n;n+1\) là 3 số tự nhiên liên tiếp thì chia hết cho 6
Ta có đpcm
chung minh rang voi moi so nguyen n thi n(n^2+1)(n^2+4) chia het cho 5
a,CMR:Bieu thuc n(2n-3)-2n(n+1) luon chia het cho 5 voi moi n la so nguyen
b,CMR:Bieu thuc (n-1)(n+4)-(n-4)(n+10) luon chia het cho 6 voi moi so nguyen n
cho a va b la hai so tu nhien. biet a chia cho 5 du 1 ; b chia cho 5 du 4. chung minh (b-a)(b+a) chia cho 4
chung minh 2n^2(n+1)-2n(n^2+n-3) chia het cho 6 voi moi so nguyen n
chung minh n( 3-2n)-(n-1)(1+4n)-1 chia het cho 6 voi moi so nguyen n
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
chung minh rang 3n+2 _ 2n+4 +3n + 2n chia het cho 30 voi moi so nguyen duong n
Ta có: 3n+2 - 2n+4 + 3n + 2n
= 3n . 32 - 2n . 24 + 3n + 2n
= 3n . 9 - 2n . 16 + 3n + 2n
= (3n . 9 + 3n) - (2n . 16 - 2n)
= 3n . (9 + 1) - 2n . (16 - 1)
= 3n . 10 - 2n . 15
Do n nguyên dương nên 3n chia hết cho 3, 2n chia hết cho 2
=> 3n . 10 chia hết cho 30, 2n . 15 chia hết cho 30
=> 3n . 10 - 2n . 15 chia hết cho 30
=> đpcm
chung minh gia tri cua bieu thuc n(n+5)-n(n-3)(n+2) luon chia het cho 6 voi n la moi so nguyen
ta có : n(n+5)−(n−3)(n+2)=n^2+5n−(n^2+2n−3n−6)
=n^2+5n−n^2−2n+3n+6=6n+6=6(n+1)⋮6
⇔6(n+1)⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2)chia hết cho 6 với mọi n là số nguyên (đpcm)
chung minh rang voi moi N nguyen duong thi 3^n+2 - 2^n+2 + 3^n - 2^n chia het cho 10
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
CMR:
a,Bieu thuc : n(2n-3)-2n(n+1) luon chia het cho 5 voi moi n la so nguyen
b,Bieu thuc (n-1 )(n+4) - (n-4) (n+1)
a) \(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n⋮5\)với \(n\inℤ\)
b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=n^2+3n-4-\left(n^2-3n-4\right)=6n\)