tìm các giá trị số của X sao cho:
a) Xx3/X= 3 b) X/Xx6= 1/6 c) 7/X = 1/4
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x + y/3 = 5/6 .
2Tìm các số nguyên x và y sao cho:
a) 5/x - y/3 = 1/6
b) x/6 - 2/y = 1/30
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
Câu 5: Tìm cac giá trị của x sao cho:
a. |2x - 3| = |1- x| b. x2 - 4x <= 5 c. 2x(2x - 1) <= 2x -1
a: |2x-3|=|1-x|
=>\(\left[{}\begin{matrix}2x-3=1-x\\2x-3=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+x=3+1\\2x-x=-1+3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=4\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
b: \(x^2-4x< =5\)
=>\(x^2-4x-5< =0\)
=>\(x^2-5x+x-5< =0\)
=>\(x\left(x-5\right)+\left(x-5\right)< =0\)
=>\(\left(x-5\right)\left(x+1\right)< =0\)
TH1: \(\left\{{}\begin{matrix}x-5>=0\\x+1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=5\\x< =-1\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-5< =0\\x+1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =5\\x>=-1\end{matrix}\right.\)
=>-1<=x<=5
c: 2x(2x-1)<=2x-1
=>\(\left(2x-1\right)\cdot2x-\left(2x-1\right)< =0\)
=>\(\left(2x-1\right)^2< =0\)
mà \(\left(2x-1\right)^2>=0\forall x\)
nên \(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>\(x=\dfrac{1}{2}\)
1. Tìm x N sao cho:
a) (x - 140) : 7 = - . 3
b) . = :
c) (x + 2) . (x - 4) = 0
d) - = 2 .
2. Tìm x N sao cho:
a) 9 : (x + 2)
b) (x + 17) : (x + 3)
Giúp mình với, mình cân gấp!
Câu 2:
a: \(\Leftrightarrow x+2\in\left\{3;9\right\}\)
hay \(x\in\left\{1;7\right\}\)
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x + y/3 = 5/6 .
b: 4/x+y/3=5/6
=>\(\dfrac{12+xy}{3x}=\dfrac{5}{6}=\dfrac{5x}{6x}\)
=>24+2xy=5x
=>5x-2xy=24
=>x(5-2y)=24
=>x(2y-5)=-24
=>(x;2y-5) thuộc {(24;-1); (-24;1); (8;-3); (-8;3)}(Vì x và y là số nguyên)
=>(x,y) thuộc {(24;2); (-24;3); (8;1); (-8;1)}
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x y/3 = 5/6 .
a: =>\(\dfrac{xy-12}{3y}=\dfrac{1}{5}\)
=>5(xy-12)=3y
=>5xy-3y=60
=>y(5x-3)=60
=>(y;5x-3) thuộc {(5;12); (30;2)}(Vì x,y là số nguyên)
=>(y,x) thuộc {(5;3); (30;1)}
b: Bạn ghi lại đề đi bạn
Tìm các số nguyên x, y sao cho:
a) x . y = 2
b) x . y = -7 và x < y;
c) (x + 1). (y + 4) = -7 và x < y
a: \(\left(x,y\right)\in\left\{\left(1;2\right);\left(-1;-2\right);\left(2;1\right);\left(-2;-1\right)\right\}\)
2. Tìm tập hợp các số nguyên x sao cho:
a) – 2 < x < 1; b) – 5 ≤ x ≤ 3; c) – 4 < x < - 3.
3. Sắp xếp các số nguyên sau theo thứ tự tăng dần: 12; - 7; 21; 0; 6; - 5; - 10.
4. Lấy ví dụ để minh họa các khẳng định sau:
a) Trong hai số nguyên dương, số có giá trị tuyệt đối lơn hơn thì lớn hơn.
b) Trong hai số nguyên âm, số có giá trị tuyệt đối nhỏ hơn thì lớn hơn.
5. Có thể kết luận gì về số nguyên a nếu biết:
a) a = |a| b) a < |a|
6. a) Với mọi số nguyên a, ta có: |a| ≥ 0. Khi nào xảy ra đẳng thức?
b) Với mọi số nguyên a, ta có: |a| ≥ a. Khi nào xảy ra đẳng thức?
7. Cho tập hợp A = { x | −6 x 5 }
a) Viết tập hợp A bằng cách liệt kê các phần tử
b) Điền các ký hiệu thích hợp vào các chỗ trống:
-8…….A; -5……A; {-2;-1}……A; A……
8. a) Có phải bao giờ ta cũng có a > -a không?
b) Khi nào thì a < - a?
9. Tìm tập hợp các số nguyên x biết:
a) |x| = 7; b) |x| = -2; c) |x| < 3.
10. So sánh hai số nguyên a và b biết rằng |a| < |b| và
a) a và b là hai số nguyên dương.
b) a và b là hai số nguyên âm.
11. Cho số nguyên a. Điền kí hiệu thích hợp vào chỗ trống (…):
a) Nếu |a| = a thì a …….0; b) Nếu |a| = -a thì a ……0; c) Nếu |a| > a thì a……0.
a) 5x/2x+2 +1=-6/x+1
b) x2-6/x = x+3/2
c) Tìm x sao cho giá trị của biểu thức 3x-2/4 không nhỏ hơn giá trị của biểu thức 3x+3/6
d) Tìm x sao cho giá trị của biểu thức (x+1)2 không nhỏ hơn giá trị của biểu thức (x-1)2
e) Tìm x sao cho giá trị của biểu thức 2x-3/35 + x(x-2)/7 không lớn hơn giá trị của biểu thức x^2/7-2x-3/5
f) Tìm x sao cho giá trị của biểu thức 3x-2/4 không lớn hơn giá trị của biểu thức 3x+3/6
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho:
a. Đa thức f(x)=x^3+mx^2+nx+2 chia cho x+1 dư 5, chia cho x+2 dư 8.
b. Đa thức f(x)=x^3+mx+n chia cho x+1 thì dư 7, chia cho x-3 thì dư -5.
c. Đa thức f(x)=mx^3+nx^2+k chia hết cho x+2, chia cho x^2-1 thì dư x+5.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2