Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2018 lúc 3:29

Chọn đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2018 lúc 17:08

Đáp án D

Dieren
Xem chi tiết
Thịnh
Xem chi tiết
Tran Le Khanh Linh
18 tháng 8 2020 lúc 20:22

Sửa: \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4\); x+y=1

Ta có \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4=2x^4+2x^3y-x^3+2xy^3-y^3+2y^4\)

\(=x^3\left(2x+2y\right)+y^3\left(2x+2y\right)-\left(x^3+y^3\right)=\left(2x+2y\right)\left(x^3+y^3\right)-\left(x^3+y^3\right)\)

\(=\left(2x+2y-1\right)\left(x^3+y^3\right)=x^3+y^3\)

Do \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2-xy+y^2=\frac{1}{2}\left(x^2+y^2\right)\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2\)

\(\Rightarrow P\ge\frac{1}{2}\left(x^2+y^2\right)\)

Mà \(x+y=1\Rightarrow x^2+y^2+2xy=1\Rightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)

\(\Rightarrow2\left(x^2+y^2\right)\ge1\Rightarrow\left(x^2+y^2\right)\ge\frac{1}{2}\Rightarrow P\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2019 lúc 8:25

Đáp án C

Ta có

Lại có

Inequalities
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 12 2020 lúc 17:07

Không nhìn thấy bất cứ chữ nào của đề bài cả 

Trịnh Như Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 10 2018 lúc 4:48

Đáp án đúng : A

Monkey D.Luffy
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 0:15

\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)

\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)

\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)

\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)

\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)