Tìm X biết (1/1.2.3.4+1/2.3.4.5+....+1/7.8.9.10)x=119/720
Tìm x biết (1/1.2.3.4+1/2.3.4.5+1/3.4.5.6+...+1/7.8.9.10).x=119/720
Tìm x biết \(\left(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{7.8.9.10}\right).x=\dfrac{119}{720}\)
Tìm x biết (:\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\)\(\frac{1}{3.4.5.6}+...+\frac{1}{7.8.9.10}\)) .x = \(\frac{119}{720}\)
( Ai giải mình mới tick nha )
Giải tạm trong câu này chứ không thấy đề ở đâu hết. Với n dương
So sánh \(\frac{n}{n+3};\frac{n+1}{n+2}\)
Ta có: \(\frac{n}{n+3}< \frac{n}{n+2}\) (vì cùng tử nên mẫu bé hơn thì lớn hơn) (1)
Ta lại có: \(\frac{n}{n+2}< \frac{n+1}{n+2}\) (vì cùng mẫu nên tử lớn hơn thì lớn hơn) (2)
Từ (1) và (2) \(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
Ô hay! giải phương trình có phải C/M bất đẳng thức đâu.
Lớp 6 khoai quá
hd: TÁCH SỐ HẠNG mẫu tạo các phân số đối;
\(\frac{1}{1.2.3.4}=\frac{1}{6}\left[\frac{1}{1}-\frac{3}{2}+\frac{3}{3}-\frac{1}{4}\right]\)
\(\frac{1}{2.3.4.5}=\frac{1}{6}\left[\frac{1}{2}-\frac{3}{3}+\frac{3}{4}-\frac{1}{5}\right]\)
\(\frac{1}{3.4.5.6}=\frac{1}{6}\left[\frac{1}{3}-\frac{3}{4}+\frac{3}{5}-\frac{1}{6}\right]\)
\(\frac{1}{4.5.6.7}=\frac{1}{6}\left[\frac{1}{4}-\frac{3}{5}+\frac{3}{6}-\frac{1}{7}\right]\)
\(\frac{1}{5.6.7.8}=\frac{1}{6}\left[\frac{1}{5}-\frac{3}{6}+\frac{3}{7}-\frac{1}{8}\right]\)
....
....
từ số hạng thứ 4 xuất hiện các cặp đối khi n tăng lên--> tự bạn --> nội suy--phần giữa--> triệt tiêu.
Tổng quát:
\(\frac{1}{n.\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{6}\left[\frac{1}{n}-\frac{3}{n+1}+\frac{3}{n+2}-\frac{1}{n+3}\right]\)
A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{7.8.9.10}\)
E=1/1.2.3.4+1/2.3.4.5+...…+1/7.8.9.10
Các bạn giúp mình nhé mình cảm ơn rất nhiều
E=1/1.2.3.4+1/2.3.4.5+.....+1/7.8.9.10
Các bạn giúp mình nhé mình cảm ơn rất nhiều
Ta xét:
\(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}=\dfrac{3}{1.2.3.4};\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}=\dfrac{3}{2.3.4.5};.....;\dfrac{1}{7.8.9}-\dfrac{1}{8.9.10}=\dfrac{3}{7.8.9.10}\)
Gọi biểu thức phải tính là A, ta có:
3A=\(\dfrac{1}{1.2.3}-\dfrac{1}{8.9.10}=\dfrac{714}{4320}\)
Vậy A=\(\dfrac{238}{1440}\)
bạn giai tớ bài này
bài này không 1\299 + 4\299+7\299 +...... + 298\299
Tìm x biết :
( \(\frac{1}{1.2.3.4}\)+ \(\frac{1}{2.3.4.5}\)+...+ \(\frac{1}{27.28.29.30}\)) x = -3
\(\Rightarrow\left(\frac{1}{1}-\frac{1}{30}\right)x=-3\)
\(\Rightarrow\frac{29}{30}x=-3\)
\(\Rightarrow x=\left(-\frac{29}{90}\right)\)
tính trog ngoặc trc nè :
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
=\(\frac{1}{6}-\frac{1}{24360}\)
=\(\frac{1353}{8120}\)
thay vô biểu thức :
\(\frac{1353}{8120}.x=-3\)
x=\(-\frac{8120}{451}\)
Tìm x biết
\(\left(\frac{1}{1.2.3.\text{ 4}}+\frac{1}{2.3.\text{ 4}.5}+\frac{1}{3.\text{ 4}.5.6}+...+\frac{1}{7.8.9.10}\right)x=\frac{119}{120}\)
chổ bị khuyết là 119/120
Đặt biểu thức trong ngoặc là A
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{7.8.9.10}.\)
\(3A=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+\frac{6-3}{3.4.5.6}+...+\frac{10-7}{7.8.9.10}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{7.8.9}-\frac{1}{8.9.10}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{8.9.10}\Rightarrow A=\frac{1}{1.2.3.3}-\frac{1}{3.8.9.10}\)
Từ đó tính ra x . Bạn tự làm nốt nhé. Ngại tính
Tìm x: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+..+\frac{1}{27.28.29.30}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(\Leftrightarrow\frac{4949}{19800}-3x=\frac{451}{8120}\)
\(\Leftrightarrow x\approx0,0648\)