Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
вùʏ zăɴ ĸнôʏ
Xem chi tiết
вùʏ zăɴ ĸнôʏ
20 tháng 10 2021 lúc 9:11

Thấy Chưa Mọi Người

Lấp La Lấp Lánh
20 tháng 10 2021 lúc 9:11

Đồng vị đúng r nhé

Châu Chu
20 tháng 10 2021 lúc 9:12

So le trong nhé! Cho mik xin 1 tick với!!

вùʏ zăɴ ĸнôʏ
Xem chi tiết
Cao ngocduy Cao
20 tháng 10 2021 lúc 9:01

cau hoi dau ban

Cao ngocduy Cao
20 tháng 10 2021 lúc 9:01

???

ĐẶNG CAO TÀI DUY
20 tháng 10 2021 lúc 9:01

????????????

 

Mỹ Tâm
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 14:48

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

Đinh Thị Bích Thảo
Xem chi tiết
Người
16 tháng 12 2018 lúc 23:34

Câu này dc ko

Hai triệu to lắm nghĩa là gì

FTMD đọc ra tiếng anh thế nào

Nguyễn Ngọc Tuệ Nghi
Xem chi tiết
missing you =
19 tháng 8 2021 lúc 12:16

mai bạn tách ra nha để vậy hơi nhiều

c1: theo ct: \(I=\dfrac{U}{R}\)=>U tỉ lệ thuận I =>I càng lớn thì U càng lớn

C2(bn làm đúng)

C3: \(=>Umax=Imax.R=40.\dfrac{250}{1000}=10V\)=>chọn C

c4: R1 nt(R2//R3) =>U2=U3 mà R2=R3=>I2=I3

\(=>I1=I2+I3=>I2=I3=\dfrac{I1}{2}\)

C5: R1 nt R2

mà \(I1=2A,I2=1,5A\)=>chọn I2\(=>I1=I2=Im=1,5A=>Umax=\left(R1+R2\right).1,5=90V\)

C6: R1//R2

\(=>U1=I1R1=30V,U2=I2R2=15V\)=.chọn U2

C7\(=>\dfrac{1}{RTd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=>Rtd=6\left(om\right)\)

C8-\(=>I=\dfrac{U}{\dfrac{R1R2}{R1+R2}}=0,9A\)

\(=>I1=\dfrac{U}{R1}=\dfrac{12}{20}=0,6A=>I2=0,3A\)

C9-\(=>U3=\left(\dfrac{U1}{R1}\right)R3=8V=>Um=U1+U2+U3=....\)

(thay số vào)

C10\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=>Rtd=......\)(thay số)

 

missing you =
19 tháng 8 2021 lúc 14:08

C11: các bóng đèn như nhau nên mắc vào chung 1 nguồn điện nối tiếp sẽ hoạt động với đúng cường độ dòng điện định mức nên các bóng đều sáng bth=>chọn B

C12 \(\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}\)=>chọn D

c13\(=>R=\dfrac{U}{I}=\dfrac{6}{0,3}=20\left(om\right)\)

c14 R1 nt R2

\(R1=\dfrac{3}{0,3}=10\left(om\right),R2=\dfrac{6}{0,5}=12\left(om\right)=>I1=I2=\dfrac{11}{R1+R2}=0,5A=>I1>I\left(đm1\right),I2=I\left(đm2\right)\)

=>đèn 1 sáng mạnh hơn bth có thể hỏng , đèn 2 sáng bth

c15.\(=>\dfrac{R1}{R2}=\dfrac{S2}{S1}=>\dfrac{R1}{6}=\dfrac{1}{3}=>R1=2\left(om\right)\)

c16.\(=>l=\dfrac{RS}{p}=\dfrac{\left(\dfrac{U}{I}\right)S}{p}=\dfrac{\left(\dfrac{220}{5}\right).2.10^{-6}}{0,4.10^{-6}}=220m\)

c17.=>\(S'=3S,=>l'=\dfrac{1}{3}l\)

\(=>\dfrac{R}{R'}=\dfrac{\dfrac{pl}{S}}{\dfrac{pl'}{S'}}=\dfrac{S'.l}{S.l'}=\dfrac{3S.l}{S.\dfrac{1}{3}.l}=9=>R=9R'=>R'=\dfrac{R}{9}=1\left(om\right)\)

c18.chọn dây dẫn R3 có l3=l2,S3=S1,chùng chất liệu đồng

\(=>\dfrac{R1}{R3}=\dfrac{l1}{l3}=>\dfrac{1,7}{R3}=\dfrac{100}{200}=>R3=3,4\left(om\right)\)

\(=>\dfrac{R2}{R3}=\dfrac{S3}{S2}=>\dfrac{17}{3,4}=\dfrac{10^{-6}}{S2}=>S2=2.10^{-7}m^2\)\(=0,2mm^2\)

c19 \(l1=8l2,S1=2S2\)

\(=>\dfrac{R1}{R2}=\dfrac{\dfrac{pl1}{S1}}{\dfrac{.pl2}{S2}}=\dfrac{S2.l1}{S1.l2}=\dfrac{S2.8l2}{2S2.l2}=4=>R1=4R2\)

c20.\(=>R=\dfrac{0,9}{15}=0,06\left(om\right)\)(đáp án đề sai)

c21\(=>l=\dfrac{RS}{p}=\dfrac{10.10^{-7}}{0,4.10^{-6}}=2,5m\)

c22\(=>R=\dfrac{pl}{S}=\dfrac{6.1;7.10^{-8}}{3,14.\left(\dfrac{0,0012}{2}\right)^2}=0,09\left(om\right)\)

 

 

La Nguyen
Xem chi tiết
Nguyễn Quang Minh
8 tháng 5 2022 lúc 21:38

\(n_{Fe}=\dfrac{22,4}{56}=0,4\left(mol\right)\\ pthh:Fe+H_2SO_4\rightarrow FeSO_4+H_2\) 
          0,4                      0,4          0,4 
\(V_{H_2}=0,4.22,4=8,96l\\ m_{FeCl_2}=0,4.127=50,8g\\ n_{Fe_2O_3}=\dfrac{14}{160}=0,0875\left(mol\right)\\ pthh:Fe_2O_3+3H_2\underrightarrow{t^o}2Fe+3H_2O\)
   \(LTL:\dfrac{0,0875}{1}< \dfrac{0,4}{3}\) 
=> H2 dư 
\(n_{H_2\left(p\text{ư}\right)}=3n_{Fe_2O_3}=0,2625\left(mol\right)\\ m_{H_2\left(d\right)}=\left(0,4-0,2625\right).2=0,275g\\ n_{Fe}=2n_{Fe_2O_3}=0,175\left(mol\right)\\ m_{Fe}=0,175.56=9,8g\)

Phạm Thị Ngọc Lan
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 16:21

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x-2}+1}{\sqrt[]{x+3}-2}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x-2}+1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)\left(\sqrt[]{x+3}+2\right)}{\left(\sqrt[]{x+3}-2\right)\left(\sqrt[]{x+3}+2\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\sqrt[]{x+3}+2\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x+3}+2}{\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1}\)

\(=\dfrac{\sqrt[]{1+3}+2}{\sqrt[3]{\left(1-2\right)^2}-\sqrt[3]{1-2}+1}=\dfrac{4}{3}\)

Nguyễn Trung Kiên
Xem chi tiết
Nguyễn Trung Kiên
29 tháng 11 2021 lúc 14:00

e đăng lại tr quên thêm ảnh kkk 

Phạm Thị Ngọc Lan
Xem chi tiết
Trương văn doanh
11 tháng 3 2022 lúc 14:31

theo mình thì câu trên: dưới mẫu trong căn bỏ n^2 ra làm nhân tử chung xong đặt nhân tử chung của cả mẫu là n^2 . câu dưới thì mình k biết!!

 

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:33

\(\lim\dfrac{-3n+2}{n-\sqrt{4n+n^2}}=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{\left(n-\sqrt{4n+n^2}\right)\left(n+\sqrt{4n+n^2}\right)}\)

\(=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{-4n}=\lim\dfrac{n\left(-3+\dfrac{2}{n}\right)n\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4n}\)

\(=\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}\)

Do \(\lim\left(n\right)=+\infty\)

\(\lim\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=\dfrac{\left(-3+0\right)\left(1+\sqrt{0+1}\right)}{-4}=\dfrac{3}{2}>0\)

\(\Rightarrow\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=+\infty\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:36

\(\lim\left(\sqrt[3]{n^3+9n^2}-n\right)=\lim\dfrac{\left(\sqrt[3]{n^3+9n^2}-n\right)\left(\sqrt[3]{\left(n^3+9n^2\right)^2}+n\sqrt[3]{n^3+9n^2}+n^2\right)}{\sqrt[3]{\left(n^3+9n^2\right)}+n\sqrt[3]{n^3+9n^2}+n^2}\)

\(=\lim\dfrac{9n^2}{\sqrt[3]{\left(n^3+9n^2\right)^2}+n\sqrt[3]{n^3+9n^2}+n^2}\)

\(=\lim\dfrac{9n^2}{n^2\sqrt[3]{\left(1+\dfrac{9}{n}\right)^2}+n^2\sqrt[3]{1+\dfrac{9}{n}}+n^2}\)

\(=\lim\dfrac{9}{\sqrt[3]{\left(1+\dfrac{9}{n}\right)^2}+\sqrt[3]{1+\dfrac{9}{n}}+1}\)

\(=\dfrac{9}{\sqrt[3]{\left(1+0\right)^2}+\sqrt[3]{1+0}+1}=\dfrac{9}{3}=3\)